Herein,we reported in situ synthesis of biomass-derived Ni/C catalyst by self-reduction with pomelo peel.Compared with the conventional method, which includes carbonization, activation, impregnation and reduction, the...Herein,we reported in situ synthesis of biomass-derived Ni/C catalyst by self-reduction with pomelo peel.Compared with the conventional method, which includes carbonization, activation, impregnation and reduction, the entire preparation process was simplified to two steps, which was more straightforward. This synthesis method was green as Ni/C can be prepared without any additional chemical and the self-reduction process was realized in N2, which can avoid using H2 thus averting some problems such as storage, transportation and safety of H2. Meanwhile, the size and dispersion of Ni particles can be controlled by changing carbonization temperature.The synthesis mechanism of Ni/C catalyst with selfreduction was investigated, which was mainly attributed to the carbon and reducing gas produced during the carbonization process.For the catalytic performance of GVL synthesis, a high yield (94.5%) can be obtained and it exhibited good stability up to 5 cycles without obvious loss of catalytic activity.展开更多
An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and c...An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and could be sustainably used. As a result, quantitative conversion of ethyl levulinate (EL) and 99.0% yield of GVL were obtained in the CTH process using i-PrOH as hydrogen donor. The Cu/ZnO/Al2O3 catalyst with high-surface-area could be reused at least four times without the loss of catalytic activity. Furthermore, the structure and properties of Cu/ZnO/Al2O3 catalyst was characterized through XRD, BET, SEM, TEM and H2-TPR. Also, the influence of different support oxides and calcination temperatures was investigated.展开更多
The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu ...The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.展开更多
Here we exquisitely fabricated Cu/ZrO_(2)-dp catalysts with plentiful Cu-ZrO_(2)interfaces by depositing amorphous ZrO_(2)onto Cu nanoparticles for the hydrogenation of levulinic acid(LA)to y-valerolactone(GVL).With t...Here we exquisitely fabricated Cu/ZrO_(2)-dp catalysts with plentiful Cu-ZrO_(2)interfaces by depositing amorphous ZrO_(2)onto Cu nanoparticles for the hydrogenation of levulinic acid(LA)to y-valerolactone(GVL).With the created plentiful CU-ZrO_(2)interfaces,the optimal catalyst 3 Cu/ZrO_(2)-dp exhibited exceptional catalytic performance under mild reaction conditions,and achieved the highest GVL mass productivity of 266.0 mmol GVL·h^(-1)·g^(-1)Cu,which was 12.5 and 2.3 times of CU/ZrO_(2)catalysts with equivalent Cu loadings prepared by traditional impregnation(3 Cu/ZrO_(2)-im)or co-precipitation(3 Cu/ZrO_(2)-cp).As far as we know,this GVL mass productivity stood at the highest level compared with those obtained using non-noble metal catalysts under similar reaction conditions.By systematic investigation with multiple characterizations,density functional theory(DFT)calculations,and kinetic studies,it was found that interfacial active centers were created at Cu-ZrO_(2)interfaces,which contained oxygen vacancies(O_(v)),negatively charged Cu^(δ)-and partially reduced Zr^(3+)The O_(v) favored the adsorption and activation of LA via its ketone group,while negatively charged Cu^(δ)-was able to enhance heterolysis of H2,which resulted in the formation of H^(+)-Cu^(δ)-and Zr^(3+)-H^(-)active species via hydrogen spillover.Also,plentiful acid sites,which derived from coordinatively unsaturated and defective Zr species,generated at Cu-ZrO_(2)interfaces.With the cooperation of interfacial active centers(Cu^(δ-)-O_(v)-Zr^(3+))and acid sites,the fabricated 3 Cu/ZrO_(2)-dp with plentiful Cu-ZrO_(2)interfaces achieved excellent catalytic performance for the hydrogenation of LA to GVL.Hence,the synergistic catalysis of Cu-ZrO_(2)interfaces provided an effective strategy for designing catalysts with a satisfactory performance for the hydrogenation of LA,which also can be expanded to other hydrodeoxygenation reactions.展开更多
As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,ag...As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.展开更多
Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst prepar...Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization.展开更多
A novel pH gradient methodology was used to synthesise a series of Cu–ZrO2 catalysts containing different quantities of Cu and Zr.All of the catalysts were highly selective to the desired product,γ-valerolactone, an...A novel pH gradient methodology was used to synthesise a series of Cu–ZrO2 catalysts containing different quantities of Cu and Zr.All of the catalysts were highly selective to the desired product,γ-valerolactone, and are considerably more stable than Cu–ZrO2 catalysts prepared by other co-precipitation methods for this reaction.Characterisation and further investigation of these catalysts by XRD, BET, SEM and XPS provided insight into the nature of the catalytic active site and the physicochemical properties that lead to catalyst stability.We consider the active site to be the interface between Cu/CuOxand ZrOx and that lattice Cu species assist with the dispersion of surface Cu through the promotion of a strong metal support interaction.This enhanced understanding of the active site and roles of lattice and surface Cu will assist with future catalyst design.As such, we conclude that the activity of Cu–ZrO2 catalysts in this reaction is dictated by the quantity of Cu–Zr interface sites.展开更多
The present work explores the reaction pathways of γ-valerolactone(GVL) over a supported ruthenium catalyst. The conversion of GVL in aqueous phase over a 5% Ru/C catalyst was investigated in a batch reactor operatin...The present work explores the reaction pathways of γ-valerolactone(GVL) over a supported ruthenium catalyst. The conversion of GVL in aqueous phase over a 5% Ru/C catalyst was investigated in a batch reactor operating at 463 K under 500–1000 psi of H2. The main reaction products obtained under these conditions were 2-butanol(2-BuOH), 1,4-pentanediol(1,4-PDO), 2-methyltetrahydrofuran(2-MTHF) and 2-pentanol(2-PeOH). A complete reaction network was developed, identifying the primary and/or secondary products. In this reaction network, production of 2-BuOH via decarbonylation of a ring-opened surface intermediate CH3CH(O*)–(CH2)2–CO*is clearly the dominant pathway. From the evolution of products as a function of reaction time and theoretical(DFT) calculations, a mechanism for the formation of intermediates and products is proposed. The high sensitivity of 2-BuOH production to the presence of CO, compared to a much lower effect on the production of the other products indicates that the sites responsible for decarbonylation are particularly prone to CO adsorption and poisoning. Also, since the decarbonylation rate is not affected by the H2 pressure it is concluded that the direct decarbonylation path of the CH3CH(O*)–(CH2)2–CO*intermediate does not required a previous dehydrogenation step, as is the case in decarbonylation of short alcohols.展开更多
The production ofγ-valerolactone(GVL)from biomass derivatives levulinic acid(LA)based on acidbase metallic catalysts offers a sustainable pathway to the synthesis of valuable chemicals and biofuels.However,the develo...The production ofγ-valerolactone(GVL)from biomass derivatives levulinic acid(LA)based on acidbase metallic catalysts offers a sustainable pathway to the synthesis of valuable chemicals and biofuels.However,the development of efficient metallic catalysts with tunable Lewis acid–base and Brønsted acid sites remains a challenge.Herein,for the first time,we integrated zeolite and layered double hydroxide(LDH),in a core–shell structure,wherein zeolite and CoFe-LDH provided the Brønsted acidic sites and Lewis acid sites,respectively.Meanwhile,oxygen vacancies(OV_(x))acting as Lewis bases were generated on the surface of LDH via Ga doping.An efficient cascade catalytic reaction from LA to GVL was successfully achieved over the designed Beta@LDH-OVx catalyst,affording a superior conversion of LA(>99.9%)and an impressive selectivity to GVL(89.18%).Importantly,the“memory effect”of LDH endowed the catalyst with excellent regeneration of metal active sites.Density functional theory calculations revealed that the introduced OVx facilitated the adsorption of carbonyl oxygen in LA and boosted the production of GVL through the synergistic effect of acid/base sites in the composite catalyst.This work presents a rational design route for the construction of multifunctional catalysts by coupling zeolites and LDHs for highly selective catalytic conversion of biomass.展开更多
Conversion of biomass-derived ethyl levulinate toγ-valerolactone is realized by using homogeneous iron-catalyzed transfer hydrogenation(CTH).By utilizing Casey's catalyst and cheap isopropanol as hydrogen source,...Conversion of biomass-derived ethyl levulinate toγ-valerolactone is realized by using homogeneous iron-catalyzed transfer hydrogenation(CTH).By utilizing Casey's catalyst and cheap isopropanol as hydrogen source,γ-valerolactone can be generated in 95%yield.Addition of catalytic amount of base is important to achieve good yield.展开更多
Selective hydrogenation of Levulinic acid(LA)toγ-Valerolactone(GVL)is an important reaction to produce high value-added chemicals and fuels but remains a big challenge.Herein we reported a Ru/zeolite catalyst with Mn...Selective hydrogenation of Levulinic acid(LA)toγ-Valerolactone(GVL)is an important reaction to produce high value-added chemicals and fuels but remains a big challenge.Herein we reported a Ru/zeolite catalyst with Mn promotion,which exhibited excellent catalytic performance(yield:98%)towards LA to GVL.The intrinsic activity(TOF)also increased obviously with the Mn addition.The particle size of Ru gradually decreased with the increase of Mn loading and a strong interaction between Ru and support was observed for the Ru-Mn/MCM-49 catalyst.The addition of Mn not only offered a good dispersion of Ru species on MCM-49,but also increased the L/B ratio of the catalyst,thereby contributing to the high GVL selectivity.High dispersed Ru sites were the intrinsic active sites of the catalyst verified by the in-situ experimental studies.The dissociation of the reactants was significantly enhanced,resulting in higher catalytic activity.展开更多
γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil d...γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.展开更多
A new condensation reaction of β-keto-δ-valerolactones was developed. The condensation products are composed of a pair of isomers because of the formation ofintramolecular hydrogen bond. Their structures were confir...A new condensation reaction of β-keto-δ-valerolactones was developed. The condensation products are composed of a pair of isomers because of the formation ofintramolecular hydrogen bond. Their structures were confirmed by 1HNMR and elemental analysis.展开更多
Novozyme 435,which is the commercially available immobilized form of Candida antarctica lipase B,has been successfully conducted ring opening polymerization of lactones in organic solvents.In this paper,it was aimed t...Novozyme 435,which is the commercially available immobilized form of Candida antarctica lipase B,has been successfully conducted ring opening polymerization of lactones in organic solvents.In this paper,it was aimed to introduce an alternative biocatalyst for Novozyme 435.Candida antarctica lipase B immobilized onto rice husk ashes via physical adsorption(with a specific activity of 4.4 U/mg)was prepared in previous studies and used as a biocatalyst for poly(δ-valerolactone)synthesis in the present work.Polymerization reactions were proceeded at various reaction temperatures and periods via both two immobilized enzyme preparations.The resulting products were characterized spectroscopically and thermally.The highest molecular weight(Mn=9010 g/mol)was obtained via Novozyme 435 catalysis at 40℃and 24 hours.The performance of home-made lipase,which resulted in a molecular weight of 8040 g/mol,was close to commercial one.展开更多
Ranunculus ternatus is culus, which is distributed a species of genus Ranunmainly in Henan, Hubei, Guangxi, Sichuan, and Yunnan provinces in China. The root of Ranunculus ternatus has been used for the treatment of fa...Ranunculus ternatus is culus, which is distributed a species of genus Ranunmainly in Henan, Hubei, Guangxi, Sichuan, and Yunnan provinces in China. The root of Ranunculus ternatus has been used for the treatment of faucitis, tuberculosis, neck scrofula, etc in traditional Chinese medicine. Pharmacological experiment indicated that the water extract of Ranunculus ternatus inhibits not only Staphylococcus aureus and pseudomonas aeruginosa, but also S-180, and S37 remarkablely.展开更多
The construction of an acid resistant catalyst for synthesis of γ-valerolactone from levulinic acid in aqueous media is an important but highly challenging goal.Herein,an efficient Co@NCNT-800(after 800℃ pyrolysis) ...The construction of an acid resistant catalyst for synthesis of γ-valerolactone from levulinic acid in aqueous media is an important but highly challenging goal.Herein,an efficient Co@NCNT-800(after 800℃ pyrolysis) catalyst was constructed by confining Co in N-doped carbon nano-tubes(NCNT) from low cost materials by a facile strategy.Combined with the characterization results and control experiments,the in situ formed Co and Co-Ox, but not Co-Nx, proved to be the main synergistic active sites of the catalyst.It was also found that Co species are completely isolated within the bamboo-like NCNT,which could protect the metal nanoparticles from agglomeration and leaching in the strong acid reaction system.The γ-valerolactone yield of no less than 99.9% can be obtained under a relatively mild condition,and the catalytic performance has not been significantly reduced within five cycles.Therefore,this work may pave a way for the design of robust non-noble catalyst,and has potential for the production of γ-valerolactone from biomass in large-scale industries.展开更多
Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electroly...Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electrolytes has yielded highly promising results.Nevertheless,their pervasive use has been hindered by concerns regarding their toxicity,flammability,and economic viability.Herein,we propose the utilization of γ-valerolactone(γ-V),a novel eco-friendly solvent,as an alternative for conventional organic additives to improve the performance of Zn anode.Experimental investigations and theoretical analyses have verified that γ-V additives can diminish the Zn^(2+)-desolvation energy and enhance Zn^(2+) transport kinetics.The adsorbed γ-V molecules modulate the nucleation and diffusion of Zn^(2+),facilitating Zn growth along the(002) crystal plane,thus inhibiting dendrite formation and side reactions.Consequently,the modified electrolyte with 3% γ-V exhibit highly reversible cycling for 2800 h at1 mA cm^(-2) and 1 mA h cm^(-2) in Zn//Zn symmetric cell.The Zn//KVOH coin cells deliver a capacity retention of 74.7% after 1000 cycles at 5 A g^(-1).The Zn//KVOH pouch cells maintain a capacity retention of78.7% over 90 cycles at 3 A g^(-1).Notably,the γ-V additives also effectively alleviate the self-discharge phenomenon.This work provides valuable insights on the development of aqueous zinc-ion batteries with superior safety through the modulation of electrolytes using eco-friendly additives.展开更多
In this paper, aliphatic polyesters functionalized with pendant carboxylic groups were synthesized via several steps. Firstly, substituted cyclic ketone, 2-(benzyloxycarbonyl methyl)cyclopentanone (BCP) was prepar...In this paper, aliphatic polyesters functionalized with pendant carboxylic groups were synthesized via several steps. Firstly, substituted cyclic ketone, 2-(benzyloxycarbonyl methyl)cyclopentanone (BCP) was prepared through the reaction of enamine with benzyl-2-bromoacetate, and subsequently converted into the relevant functionalized 6-valerolactone derivative, 5-(benzyloxy carbonylmethyl)-δ-valerolaetone (BVL) by the Baeyer-Villiger oxidation. Secondly, the ring-opening polymerization of BVL with ε-caprolactone was carried out in bulk using stannous octoate as the catalyst to produce poly(ε-caprolactone-co-δ-valerolactone) bearing the benzyl-protected carboxyl functional groups [P(CL-co-BVL)]. Finally, the benzyl-protecting groups of P(CL-co-BVL) were effectively removed by H2 using Pd/C as the catalyst to obtain poly(ε-caprolactone-co-δ-valerolactone) bearing pendant carboxylic acids [P(CL-co-CVL)]. The structure and the properties of the polymer have been studied by Nuclear Magnetic Resonance (NMR), Fourier Infrared Spectroscopy (FT-IR) and Differential Scan Calorimetry (DSC) etc. The NMR and FT-IR results confirmed the polymer structure, and the 13C NMR spectra have clearly interpreted the sequence of ε-caprolactone and 5-(benzyloxycarbonylmethyl)-δ-valerolactone in the copolymer. When the benzyl-protecting groups were removed, the aliphatic polyesters bearing carboxylic groups were obtained. Moreover, the hydrophilicity of the polymer was improved. Thus, poly(ε-caprolactone-co-δ-valerolactone) might have great potential in biomedical fields.展开更多
Herein we report a synthesis of the natural tribolure,an aggregation pheromone which consists of(4R,8S)-,(4R,8R)-,(4S,8S)-,and(4S,8R)-4,8-dimethyldecanals in a ratio of 4/4/1/1,from(R)-4-methyl-δ-valerolactone,a by-p...Herein we report a synthesis of the natural tribolure,an aggregation pheromone which consists of(4R,8S)-,(4R,8R)-,(4S,8S)-,and(4S,8R)-4,8-dimethyldecanals in a ratio of 4/4/1/1,from(R)-4-methyl-δ-valerolactone,a by-product of the degradation of steroidal sapogenins.Merging the stereoisomers of the same ratios into one synthetic target and using the same chiron for the construction of the C4 stereocenters are notable features of this synthesis.展开更多
基金funded by the National Key R&D Program of China (2018YFB1501504)the National Natural Science Foundation of China (Nos. 51776206 and 21878290)+1 种基金the Natural Science Foundation of Guangdong province (2017A030313073)CAS Pioneer Hundred Talents Program
文摘Herein,we reported in situ synthesis of biomass-derived Ni/C catalyst by self-reduction with pomelo peel.Compared with the conventional method, which includes carbonization, activation, impregnation and reduction, the entire preparation process was simplified to two steps, which was more straightforward. This synthesis method was green as Ni/C can be prepared without any additional chemical and the self-reduction process was realized in N2, which can avoid using H2 thus averting some problems such as storage, transportation and safety of H2. Meanwhile, the size and dispersion of Ni particles can be controlled by changing carbonization temperature.The synthesis mechanism of Ni/C catalyst with selfreduction was investigated, which was mainly attributed to the carbon and reducing gas produced during the carbonization process.For the catalytic performance of GVL synthesis, a high yield (94.5%) can be obtained and it exhibited good stability up to 5 cycles without obvious loss of catalytic activity.
基金the financial support from the State Key Program of the National Natural Science Foundation of China(No.21436007)the support from the central laboratory of SESE in SJTU
文摘An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and could be sustainably used. As a result, quantitative conversion of ethyl levulinate (EL) and 99.0% yield of GVL were obtained in the CTH process using i-PrOH as hydrogen donor. The Cu/ZnO/Al2O3 catalyst with high-surface-area could be reused at least four times without the loss of catalytic activity. Furthermore, the structure and properties of Cu/ZnO/Al2O3 catalyst was characterized through XRD, BET, SEM, TEM and H2-TPR. Also, the influence of different support oxides and calcination temperatures was investigated.
基金supported by the National Natural Science Foundation of China(21676223,21706223,21776234,21606188)the Fundamental Research Funds for the Central Universities(20720180084),the Energy development Foundation of Energy College,Xiamen University(2017NYFZ02)+1 种基金the Natural Science Foundation of Fujian Province of China(2018J01017)the Education Department of Fujian Province(JZ160398)~~
文摘The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.
基金financial support from the National Natural Science Foundation of China(21576161,21703133,21802076,and 21962013)the Fundamental Research Funds for the Central Universities(GK202003028)。
文摘Here we exquisitely fabricated Cu/ZrO_(2)-dp catalysts with plentiful Cu-ZrO_(2)interfaces by depositing amorphous ZrO_(2)onto Cu nanoparticles for the hydrogenation of levulinic acid(LA)to y-valerolactone(GVL).With the created plentiful CU-ZrO_(2)interfaces,the optimal catalyst 3 Cu/ZrO_(2)-dp exhibited exceptional catalytic performance under mild reaction conditions,and achieved the highest GVL mass productivity of 266.0 mmol GVL·h^(-1)·g^(-1)Cu,which was 12.5 and 2.3 times of CU/ZrO_(2)catalysts with equivalent Cu loadings prepared by traditional impregnation(3 Cu/ZrO_(2)-im)or co-precipitation(3 Cu/ZrO_(2)-cp).As far as we know,this GVL mass productivity stood at the highest level compared with those obtained using non-noble metal catalysts under similar reaction conditions.By systematic investigation with multiple characterizations,density functional theory(DFT)calculations,and kinetic studies,it was found that interfacial active centers were created at Cu-ZrO_(2)interfaces,which contained oxygen vacancies(O_(v)),negatively charged Cu^(δ)-and partially reduced Zr^(3+)The O_(v) favored the adsorption and activation of LA via its ketone group,while negatively charged Cu^(δ)-was able to enhance heterolysis of H2,which resulted in the formation of H^(+)-Cu^(δ)-and Zr^(3+)-H^(-)active species via hydrogen spillover.Also,plentiful acid sites,which derived from coordinatively unsaturated and defective Zr species,generated at Cu-ZrO_(2)interfaces.With the cooperation of interfacial active centers(Cu^(δ-)-O_(v)-Zr^(3+))and acid sites,the fabricated 3 Cu/ZrO_(2)-dp with plentiful Cu-ZrO_(2)interfaces achieved excellent catalytic performance for the hydrogenation of LA to GVL.Hence,the synergistic catalysis of Cu-ZrO_(2)interfaces provided an effective strategy for designing catalysts with a satisfactory performance for the hydrogenation of LA,which also can be expanded to other hydrodeoxygenation reactions.
基金the financial support from the National Natural Science Foundation of China(U1810111,51872124 and21676116)Natural Science Foundation of Guangdong Province,China(2018B030311010)+1 种基金the Fundamental Research Funds for the Central Universities(21617431)Key Laboratory of Biomass Chemical Engineering of Ministry of Education,Zhejiang University(2018BCE002)
文摘As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.
基金financed by the National Natural Science Foundation of China(31671572)the National Key R&D Program of China(2016YFE0112800)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT-17R105)。
文摘Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization.
基金financially supported by the European Union FP7 NMP project NOVACAM (Novel cheap and abundant EU-Japan604319)
文摘A novel pH gradient methodology was used to synthesise a series of Cu–ZrO2 catalysts containing different quantities of Cu and Zr.All of the catalysts were highly selective to the desired product,γ-valerolactone, and are considerably more stable than Cu–ZrO2 catalysts prepared by other co-precipitation methods for this reaction.Characterisation and further investigation of these catalysts by XRD, BET, SEM and XPS provided insight into the nature of the catalytic active site and the physicochemical properties that lead to catalyst stability.We consider the active site to be the interface between Cu/CuOxand ZrOx and that lattice Cu species assist with the dispersion of surface Cu through the promotion of a strong metal support interaction.This enhanced understanding of the active site and roles of lattice and surface Cu will assist with future catalyst design.As such, we conclude that the activity of Cu–ZrO2 catalysts in this reaction is dictated by the quantity of Cu–Zr interface sites.
基金the Department of Energy for funding the experimental part of this work under grant DE-SC0004600the theoretical part under grant DE-EE0006287 of the Bioenergy Technology Office CHASE program
文摘The present work explores the reaction pathways of γ-valerolactone(GVL) over a supported ruthenium catalyst. The conversion of GVL in aqueous phase over a 5% Ru/C catalyst was investigated in a batch reactor operating at 463 K under 500–1000 psi of H2. The main reaction products obtained under these conditions were 2-butanol(2-BuOH), 1,4-pentanediol(1,4-PDO), 2-methyltetrahydrofuran(2-MTHF) and 2-pentanol(2-PeOH). A complete reaction network was developed, identifying the primary and/or secondary products. In this reaction network, production of 2-BuOH via decarbonylation of a ring-opened surface intermediate CH3CH(O*)–(CH2)2–CO*is clearly the dominant pathway. From the evolution of products as a function of reaction time and theoretical(DFT) calculations, a mechanism for the formation of intermediates and products is proposed. The high sensitivity of 2-BuOH production to the presence of CO, compared to a much lower effect on the production of the other products indicates that the sites responsible for decarbonylation are particularly prone to CO adsorption and poisoning. Also, since the decarbonylation rate is not affected by the H2 pressure it is concluded that the direct decarbonylation path of the CH3CH(O*)–(CH2)2–CO*intermediate does not required a previous dehydrogenation step, as is the case in decarbonylation of short alcohols.
基金the National Natural Science Foundation of China(grant nos.22288101,21920102005,and 21835002)the National Key Research and Development Program of China(grant nos.2021YFA1501202 and 2022YFA1503600)the 111 Project(grant no.B17020)for their financial support of this work.
文摘The production ofγ-valerolactone(GVL)from biomass derivatives levulinic acid(LA)based on acidbase metallic catalysts offers a sustainable pathway to the synthesis of valuable chemicals and biofuels.However,the development of efficient metallic catalysts with tunable Lewis acid–base and Brønsted acid sites remains a challenge.Herein,for the first time,we integrated zeolite and layered double hydroxide(LDH),in a core–shell structure,wherein zeolite and CoFe-LDH provided the Brønsted acidic sites and Lewis acid sites,respectively.Meanwhile,oxygen vacancies(OV_(x))acting as Lewis bases were generated on the surface of LDH via Ga doping.An efficient cascade catalytic reaction from LA to GVL was successfully achieved over the designed Beta@LDH-OVx catalyst,affording a superior conversion of LA(>99.9%)and an impressive selectivity to GVL(89.18%).Importantly,the“memory effect”of LDH endowed the catalyst with excellent regeneration of metal active sites.Density functional theory calculations revealed that the introduced OVx facilitated the adsorption of carbonyl oxygen in LA and boosted the production of GVL through the synergistic effect of acid/base sites in the composite catalyst.This work presents a rational design route for the construction of multifunctional catalysts by coupling zeolites and LDHs for highly selective catalytic conversion of biomass.
基金supported by the National Basic Re-search Program of China(973 Program)(No.2012CB215305)National Natural Science Foundation of China(Nos.21325208,21172209,21272050)+1 种基金Chinese Academy of Sciences(No.KJCX2-EW-J02),Fundamental Research Funds for the Central Universities(No.WK2060190025)the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China and the Funda-mental Research Funds for the Central Universities(wk 2060190040).
文摘Conversion of biomass-derived ethyl levulinate toγ-valerolactone is realized by using homogeneous iron-catalyzed transfer hydrogenation(CTH).By utilizing Casey's catalyst and cheap isopropanol as hydrogen source,γ-valerolactone can be generated in 95%yield.Addition of catalytic amount of base is important to achieve good yield.
基金Financial support from the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC,No.18-ZC0607-0007)is gratefully acknowledged.
文摘Selective hydrogenation of Levulinic acid(LA)toγ-Valerolactone(GVL)is an important reaction to produce high value-added chemicals and fuels but remains a big challenge.Herein we reported a Ru/zeolite catalyst with Mn promotion,which exhibited excellent catalytic performance(yield:98%)towards LA to GVL.The intrinsic activity(TOF)also increased obviously with the Mn addition.The particle size of Ru gradually decreased with the increase of Mn loading and a strong interaction between Ru and support was observed for the Ru-Mn/MCM-49 catalyst.The addition of Mn not only offered a good dispersion of Ru species on MCM-49,but also increased the L/B ratio of the catalyst,thereby contributing to the high GVL selectivity.High dispersed Ru sites were the intrinsic active sites of the catalyst verified by the in-situ experimental studies.The dissociation of the reactants was significantly enhanced,resulting in higher catalytic activity.
文摘γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.
文摘A new condensation reaction of β-keto-δ-valerolactones was developed. The condensation products are composed of a pair of isomers because of the formation ofintramolecular hydrogen bond. Their structures were confirmed by 1HNMR and elemental analysis.
文摘Unexpected condensation products from β-keto-δ-valerolactones were obtained. Theirstructures were confirmed by 'HNMR spectrum and elemental analysis.
文摘Novozyme 435,which is the commercially available immobilized form of Candida antarctica lipase B,has been successfully conducted ring opening polymerization of lactones in organic solvents.In this paper,it was aimed to introduce an alternative biocatalyst for Novozyme 435.Candida antarctica lipase B immobilized onto rice husk ashes via physical adsorption(with a specific activity of 4.4 U/mg)was prepared in previous studies and used as a biocatalyst for poly(δ-valerolactone)synthesis in the present work.Polymerization reactions were proceeded at various reaction temperatures and periods via both two immobilized enzyme preparations.The resulting products were characterized spectroscopically and thermally.The highest molecular weight(Mn=9010 g/mol)was obtained via Novozyme 435 catalysis at 40℃and 24 hours.The performance of home-made lipase,which resulted in a molecular weight of 8040 g/mol,was close to commercial one.
文摘Ranunculus ternatus is culus, which is distributed a species of genus Ranunmainly in Henan, Hubei, Guangxi, Sichuan, and Yunnan provinces in China. The root of Ranunculus ternatus has been used for the treatment of faucitis, tuberculosis, neck scrofula, etc in traditional Chinese medicine. Pharmacological experiment indicated that the water extract of Ranunculus ternatus inhibits not only Staphylococcus aureus and pseudomonas aeruginosa, but also S-180, and S37 remarkablely.
基金the funding supported by the National Natural Science Foundation of China (21406103)Support plan for Excellent Youth Innovation Team in Shandong Colleges and Universities (2020KJC012)the Foundation of Liaocheng University (318011702)。
文摘The construction of an acid resistant catalyst for synthesis of γ-valerolactone from levulinic acid in aqueous media is an important but highly challenging goal.Herein,an efficient Co@NCNT-800(after 800℃ pyrolysis) catalyst was constructed by confining Co in N-doped carbon nano-tubes(NCNT) from low cost materials by a facile strategy.Combined with the characterization results and control experiments,the in situ formed Co and Co-Ox, but not Co-Nx, proved to be the main synergistic active sites of the catalyst.It was also found that Co species are completely isolated within the bamboo-like NCNT,which could protect the metal nanoparticles from agglomeration and leaching in the strong acid reaction system.The γ-valerolactone yield of no less than 99.9% can be obtained under a relatively mild condition,and the catalytic performance has not been significantly reduced within five cycles.Therefore,this work may pave a way for the design of robust non-noble catalyst,and has potential for the production of γ-valerolactone from biomass in large-scale industries.
基金National Natural Science Foundation of China (Grant No. 52103302, and No. 52070124)Shandong Provincial Natural Science Foundation (ZR2021QB182)+1 种基金Start-up Foundation for Senior Talents of Jiangsu University (21JDG041)China Postdoctoral Science Foundation (2023M731357)。
文摘Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electrolytes has yielded highly promising results.Nevertheless,their pervasive use has been hindered by concerns regarding their toxicity,flammability,and economic viability.Herein,we propose the utilization of γ-valerolactone(γ-V),a novel eco-friendly solvent,as an alternative for conventional organic additives to improve the performance of Zn anode.Experimental investigations and theoretical analyses have verified that γ-V additives can diminish the Zn^(2+)-desolvation energy and enhance Zn^(2+) transport kinetics.The adsorbed γ-V molecules modulate the nucleation and diffusion of Zn^(2+),facilitating Zn growth along the(002) crystal plane,thus inhibiting dendrite formation and side reactions.Consequently,the modified electrolyte with 3% γ-V exhibit highly reversible cycling for 2800 h at1 mA cm^(-2) and 1 mA h cm^(-2) in Zn//Zn symmetric cell.The Zn//KVOH coin cells deliver a capacity retention of 74.7% after 1000 cycles at 5 A g^(-1).The Zn//KVOH pouch cells maintain a capacity retention of78.7% over 90 cycles at 3 A g^(-1).Notably,the γ-V additives also effectively alleviate the self-discharge phenomenon.This work provides valuable insights on the development of aqueous zinc-ion batteries with superior safety through the modulation of electrolytes using eco-friendly additives.
基金Project supported by the National Natural Science Foundation of China (No. 20804015), the Ftmdamental Research Funds for the Central Universities (Nos. WD0913008, WD1014036), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20080251102l), Shanghai Key Laboratory Project (No. 08DZ2230500) and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0825).
文摘In this paper, aliphatic polyesters functionalized with pendant carboxylic groups were synthesized via several steps. Firstly, substituted cyclic ketone, 2-(benzyloxycarbonyl methyl)cyclopentanone (BCP) was prepared through the reaction of enamine with benzyl-2-bromoacetate, and subsequently converted into the relevant functionalized 6-valerolactone derivative, 5-(benzyloxy carbonylmethyl)-δ-valerolaetone (BVL) by the Baeyer-Villiger oxidation. Secondly, the ring-opening polymerization of BVL with ε-caprolactone was carried out in bulk using stannous octoate as the catalyst to produce poly(ε-caprolactone-co-δ-valerolactone) bearing the benzyl-protected carboxyl functional groups [P(CL-co-BVL)]. Finally, the benzyl-protecting groups of P(CL-co-BVL) were effectively removed by H2 using Pd/C as the catalyst to obtain poly(ε-caprolactone-co-δ-valerolactone) bearing pendant carboxylic acids [P(CL-co-CVL)]. The structure and the properties of the polymer have been studied by Nuclear Magnetic Resonance (NMR), Fourier Infrared Spectroscopy (FT-IR) and Differential Scan Calorimetry (DSC) etc. The NMR and FT-IR results confirmed the polymer structure, and the 13C NMR spectra have clearly interpreted the sequence of ε-caprolactone and 5-(benzyloxycarbonylmethyl)-δ-valerolactone in the copolymer. When the benzyl-protecting groups were removed, the aliphatic polyesters bearing carboxylic groups were obtained. Moreover, the hydrophilicity of the polymer was improved. Thus, poly(ε-caprolactone-co-δ-valerolactone) might have great potential in biomedical fields.
文摘Herein we report a synthesis of the natural tribolure,an aggregation pheromone which consists of(4R,8S)-,(4R,8R)-,(4S,8S)-,and(4S,8R)-4,8-dimethyldecanals in a ratio of 4/4/1/1,from(R)-4-methyl-δ-valerolactone,a by-product of the degradation of steroidal sapogenins.Merging the stereoisomers of the same ratios into one synthetic target and using the same chiron for the construction of the C4 stereocenters are notable features of this synthesis.