[Objective] This study aimed to investigate the mutagenic effect of 60 Co γ-rays irradiation on turf characteristics of Buchloe dactyloides (Nutt.) Engelm. [Method] Buffalo grass were irradiated with 60 Co γ-rays ...[Objective] This study aimed to investigate the mutagenic effect of 60 Co γ-rays irradiation on turf characteristics of Buchloe dactyloides (Nutt.) Engelm. [Method] Buffalo grass were irradiated with 60 Co γ-rays at five different radiation intensities (1 200, 1 400, 1 600, 1 800, 2 000 Gy) to determine the related turf characteristics and analyze the mutagenic effect of 60 Co γ-rays at different radiation intensities on buffalo grass. [Result] Germination rates of buffalo grass irradiated by different radiation intensities of 60 Co γ-rays varied inconsistently, and the root length and bud length were shorter than the control; compared with the control, the height of irradiated seedlings was significantly reduced, and the number of tillers, plant height, leaf length and leaf blade width were smaller than the control; however, the stolon length, stolon diameter and number of stolon nods had no significant difference compared with the control. [Conclusion] This study laid foundation for determining the appropriate radiation intensity of 60 Co γ-rays and selecting useful mutants of buffalo grass.展开更多
The Ionising irradiations used mostly in the treatment of tumoral diseasses are: X, γ, β and e irradiations. The discussion will be about γ irradiations, produced in linear accelerator with photon energy 6 MV and 1...The Ionising irradiations used mostly in the treatment of tumoral diseasses are: X, γ, β and e irradiations. The discussion will be about γ irradiations, produced in linear accelerator with photon energy 6 MV and 15 MV. It is important to know the absorption performance before and after the electronic equilibrium. This is a reason that we’ve used the function of dose gradient for irradiations γ. It represents the velocity of dose change as a function of depth in tissue. From skin to maximum dose value, the increase of G-function is more accentuated for γ-rays than for β-particles while after that the G-function decreasing is less sharp for γ-rays. Finally, we’ll discuss about the advantages in terms of radiation protection of γ-rays used in radiotherapy.展开更多
The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collectin...The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collecting the Čerenkov light in the medium induced by the fast electrons generated in the Compton scattering or electromagnetic shower of the incident γray. Two types of detectors based on pure water and lead glass as sensitive materials were designed for this purpose. The γresponse and optical photon propagation in the detectors were simulated based on electromagnetic and optical processes in Geant4. The inherent energy resolutions of 0.022(4) + 0.51(2)∕E^(1/2)_(γ) for water and 0.0026(3) + 0.446(3)∕E^(1/2)_(γ) for lead glass were obtained. The geometry sizes of the lead glass and water were optimized to 30 cm × 30 cm × 30 cm and 60 cm × 60 cm ×120 cm, respectively, to detect high-energy γ-rays at 160 MeV. The Hough transform method was applied to reconstruct the direction of the incident γ-rays, providing the ability to experimentally distinguish the high-energy γ-rays produced in the reactions on the target from random background cosmic-ray muons.展开更多
A high-pressure chamber filled with natural xenon (XeHPC) under initial pressure 270 bar was irradiated during 43 hours by braking γ-rays with a maximum energy of 10 MeV at the MT-25 electron accelerator at an aver...A high-pressure chamber filled with natural xenon (XeHPC) under initial pressure 270 bar was irradiated during 43 hours by braking γ-rays with a maximum energy of 10 MeV at the MT-25 electron accelerator at an average beam intensity of 20-22 μA. After about 14 hours of irradiation, the pressure in the XeHPC dropped to 185 bar and did not change till the end of the irradiation cycle. Upon completion of exposure, part of the gas from XeHPC was bypassed into a separate reservoir to measure the xenon composition by mass-analyzer QMA-200. After the opening of the XeHPC, an inner assembly without xenon was fixed at the Ge-detector for measurement of γ-spectra of radionuclides produced in the XeHPC and the background during 15 hours. A visual inspection of the inner assembly indicated that the surfaces of its elements were covered with a siskin green layer. Using SEM (scanning electron microscopy) studies and MPRA (microprobe roentgen analysis) , the element compositions of the synthesized micro-objects and micro-particles were determined. In order to explain the observed anomalies in the formation of new elements in the micro-particles and micro-objects, nuclear fission and synthesis reactions should be used.展开更多
[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The...[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The strains were screened by plate confrontation method and Oxford cup diffusion. [Result] The curves of the relationship of irradiation dose and mutation and lethal rate were obtained. The results showed that lethal rate increased with the increasing of irradiation dose. The lethal rate of 1 000 Gy irradiation dose reached 99.50%. The mutation rate increased below 500 Gy and decreased above 500 Gy. The highest mutation rate occurred when the irradiation dose was between 400 and 700 Gy, and the average mutation rate was above 15%. The optimal irradiation dose was 500 Gy, when the average mutation rate was 26.51% and lethal rate was 77.71%. [Conclusion] This study provided references for γ-rays irradiation mutation of Bacillus subtilis.展开更多
[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety ...[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety 'Favorita',and the genomic mutations in VM1 and VM2 gene rations in treatments with different doses were analyzed by SRAP markers.[Resalt] Thirty pairs of SRAP primers out of 88 pairs exhibited polymorphism with a rate of 34.1% in the bulked selection of VM1 generation.A total of 225 bands were obtained,of which 64 were polymorphic with a rate of 28.4%.The polymorphism was reflected in the forms of deleted bands and added bands.Based on the result of the bulked selection of VM1 generation,25 primers with polymorphism were selected to scan VM2 generation.Five primers performed poorly,and nine of the rest 20 pairs revealed polymorphism and obtained nine polymorphic bands,of which only four bands were detected in VM1 generation and the other five ones were newly deleted bands.Only 9.8% of the bands detected in VM1 generation were obtained in VM2 generation.Eventually,nine stable and dear polymorphic bands were recovered and cloned,and DNA sequences of six bands of them were acquired by sequencing.According to the comparative analysis,five fragments sequences were similar to potato chromosome with a similarity rate of 77%-89%,three of them located at the resistance gene cluster; another one fragment had a similarity of 93% with some regions of the No.5 chromosome in tomato.[Conclusion] 60Co γ-ray irradiation can cause mutation of genomic DNA in potato;there is no significant correlation between the number of polymorphic bands and the irradiation dose; potymorphic bands are characterized by a larger number of deleted bands than that of the added ones.展开更多
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dis...We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.展开更多
By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanop...By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.展开更多
Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-r...Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold(LIDT),which includes defects, surface roughness, packing density and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm^2 to 12 J/cm^2, i.e., 50% increase, after the film has been irradiated by 2.2×10^(13)/cm^2 β-ray, the particle irradiation can be used as a controllable and desirable postprocessing method to improve the resistance to laser induced damage.展开更多
This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotop...This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almost independent of the flow regime. Improvement has been achieved on the measurement accuracy of phase fractions.展开更多
A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was us...A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the grafted membranes. The surface morphology of the grafted membrane was observed from scanning electron microscopy (SEM). Pure water flux measurements showed that water flux of the grafted membrane decreased with the increase of temperature, while that of chitosan membrane was constant. It was proved that grafted membrane was sensitive to temperature.展开更多
A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization wa...A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization was carded out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis could generate radicals directly on the monomer avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns were studied in the modes of CEC, p-CEC and low pressure-driven separation, all the tests exhibited reversed-phase character. It provided a viable alternative to either thermally initiated or photo polymerization method for the preparation of monolithic columns.展开更多
The changes of DC characteristics of SiGe HBT after being submitted to γ-ray irradiation of 700 krad, 7 000 krad and 10 000 krad were compared to those of Si BJT. Generally speaking, Ib and Ib- Ib0 increase with the ...The changes of DC characteristics of SiGe HBT after being submitted to γ-ray irradiation of 700 krad, 7 000 krad and 10 000 krad were compared to those of Si BJT. Generally speaking, Ib and Ib- Ib0 increase with the doses increasing. For SiGe HBT, with the doses increasing, Ic and Ic-Ic0 as well as the related changes of the current gain (β) will decrease at higher Vbe, while for Si BJT, with the doses increasing, after irradiation, Ib and Ic-Ic0 increase; ,8 and its related changes also decrease with their differences, however, tending to be very small at high doses of 7 000 krad and 10 000 krad. Moreover, given the same doses, the decreases of,a are much larger than SiGe HBT, which shows that SiGe HBT's anti-radiation performance proves to be better than Si BJT. Still, in SiGe HBT, some strange phenomena were observed: Ic-Ic0 will increase after the radiation of 7 000 krad in less than 0.65 V and as will ,8 in less than 0.75 V. The mechanism of radiation-induced change in DC characteristies was also discussed.展开更多
The effect of γ-ray irradiation on the mechanical properties of high densitypolyethylene(HDPE) filled with sericite-tridymite-cristobalite(STC) was studied. The ex-perimental results show that γ-ray irradiation can ...The effect of γ-ray irradiation on the mechanical properties of high densitypolyethylene(HDPE) filled with sericite-tridymite-cristobalite(STC) was studied. The ex-perimental results show that γ-ray irradiation can improve the affinity between HDPE andSTC, and the dispersion of STC in HDPE matrix. Compared with HDPE/STC (80/20)blend, the yield stress and impact strength of irradiated HDPE (10kGy)/STC (80/20) blendare increased from 22.8 MPa and 70J/m to 28.5 MPa and 144J/m. The yield stress andimpact strength of HDPE/irradiated HDPE/STC (48/32/20) are 27.8MPa and 210J/m,respectively.展开更多
Grafting copolymerization of styrene and acrylic acid onto polypropylene fabric had been studied by using a pre-irradiation technique. The polypropylene fabric Samples were irradiated by Y-ray and electron beam under ...Grafting copolymerization of styrene and acrylic acid onto polypropylene fabric had been studied by using a pre-irradiation technique. The polypropylene fabric Samples were irradiated by Y-ray and electron beam under the conditions of air and nitrogen gas, respectively. The effect of absorbed dose, monomer concentration in solvent, reaction temperature and reaction time on the degree of grafting were determined. The effects of metallic salts and sulphuric acid on the grafting yield of acrylic acid were also examined. The samples irradiated by electron beam give a much higher degree of grafting than those by Y -ray when styrene was grafted to polypropylene fabric. However, the grafting yield of acrylic acid on polypropylene fabric in the presence of metallic salts and sultric acid showed the opposite results from the case of styrene. This effect is reasonably interpreted by assuming that the grafting is dominated by trapped radicals and peroxides in pre-irradiated polypropylene.展开更多
Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on...Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on endurance and access speed,which is considered to be one of the candidates to replace SRAM for space application.However,little attention has been given to theγ-ray irradiation effect on the SOT-MRAM device yet.Here,we report the Co-60 irradiation results for both SOT(spin-orbit torque)magnetic films and SOT-Hall devices with the same stacks.The properties of magnetic films are not affected by radiation even with an accumulated dose up to 300 krad(Si)while the magnetoelectronic properties of SOTHall devices exhibit a reversible change behavior during the radiation.We propose a non-equilibrium anomalous Hall effect model to understand the phenomenon.Achieved results and proposed analysis in this work can be used for the material and structure design of memory cell in radiation-hardened SOT-MRAM.展开更多
10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we repo...10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we report highly efficientγ-ray generation in the parameter regime of 10 PW-class lasers at an intensity level of 10^(23)W cm^(–2)interaction with heavy-ion plasmas which have large-scale preplasmas.The laser-to-γ-ray(>1 MeV)energy conversion efficiency reaches close to 60%with an above 10^(14)γ-photons/pulse.The averageγ-photon energy is about 14 MeV with the highest photon energy exceeding 1 GeV.The high-energyγ-photons are mainly directed in the forward direction.We also find that plane target geometry is efficient enough for high powerγ-ray radiation,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.展开更多
Mutations induced from tissue culture are easily to be separated,which might be propagated in the same medium,especially for the color-leaf ornamental grass,Oxalis triaggularis purpurea.Mutations of the ornamental tra...Mutations induced from tissue culture are easily to be separated,which might be propagated in the same medium,especially for the color-leaf ornamental grass,Oxalis triaggularis purpurea.Mutations of the ornamental traits in the tissue culture bottle could be investigated easily.The 35 d regeneration system group showed the lowest adventitious bud number and adventitious root number among 4 inoculation dates by 50 Gy dose of ^(60)Coγ radiation.More studies were carried out based on the 35d differentiation state of O.triangularis purpurea regeneration system.The 35 d regeneration system was then irradiated by 10,25 and 50 Gy doses of ^(60)Coγ rays.Numbers of adventitious buds and roots induced from the regeneration system were cut down with the increment of radiation doses.Seedling length was not distinctly reduced at the absorbed doses of 10 and 25 Gy,but reduced distinctly under 50 Gy of ^(60)Coγ irradiation.The optimal irradiation dose for 35 d O.triangularis regeneration system survival and mutation induction was approximately 25 Gy.The M_2 phenotypic mutation rate was 2.9%,especially,and the leaf number mutation accounted for 76%of the total mutation.The phenotypic mutations,especially in the 10 Gy group,on 0.1 m M Vc containing MS medium were recovered,which indicated that ROS plays a key role in the phenotypic mutation induced by ^(60)Coγ -rays.展开更多
The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)3 phosphor under the β-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL gl...The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)3 phosphor under the β-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL glow curve of NaSr4(BO3)3:Ce3+ phosphor was composed of only one peak. TL kinetic parameters of NaSr4(BO3)3:Ce3+ were deduced by the peak shape method, the activation energy (E) was 0.590 eV and the frequency factor was 1.008×10^6S^-1. TL dose response was linear in the range of measurement. The 3-dimensional (3D) TL emission spectrum was also recorded, the emission spectrum consisted of two bands located at 441 and 479 nm respectively, corresponding to the characteristic 4f^05d^1→2F(5/2,7/2) transitions of the Ce3+ ion. The fading behavior of the NaSr4(BO3)3:Ce3+ phosphor over a period of 15 d was also studied.展开更多
Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the li...Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the light of experimental studies of the local-order structure of these alloys. In case of Cu85.5Al14.5, change in the total residual electrical resistivity due to neutron-irradiation effects has been estimated by including contributions from the short-range order and static atomic displacement correction. Our results show a decrease in the residual resistivity in the irradiated Cu-Al solid solution as compared to the unirradiated sample. This is in accordance with the experimental results展开更多
基金Supported by National Science and Technology Support Project of China (2009BADA7B04, 2011BAD17B01-02)National 973 Project of China (2012CB215300)+1 种基金National 863 Project of China (2012AA101201)National Pasture Modern Industry Technology System of China (CARS-35)~~
文摘[Objective] This study aimed to investigate the mutagenic effect of 60 Co γ-rays irradiation on turf characteristics of Buchloe dactyloides (Nutt.) Engelm. [Method] Buffalo grass were irradiated with 60 Co γ-rays at five different radiation intensities (1 200, 1 400, 1 600, 1 800, 2 000 Gy) to determine the related turf characteristics and analyze the mutagenic effect of 60 Co γ-rays at different radiation intensities on buffalo grass. [Result] Germination rates of buffalo grass irradiated by different radiation intensities of 60 Co γ-rays varied inconsistently, and the root length and bud length were shorter than the control; compared with the control, the height of irradiated seedlings was significantly reduced, and the number of tillers, plant height, leaf length and leaf blade width were smaller than the control; however, the stolon length, stolon diameter and number of stolon nods had no significant difference compared with the control. [Conclusion] This study laid foundation for determining the appropriate radiation intensity of 60 Co γ-rays and selecting useful mutants of buffalo grass.
文摘The Ionising irradiations used mostly in the treatment of tumoral diseasses are: X, γ, β and e irradiations. The discussion will be about γ irradiations, produced in linear accelerator with photon energy 6 MV and 15 MV. It is important to know the absorption performance before and after the electronic equilibrium. This is a reason that we’ve used the function of dose gradient for irradiations γ. It represents the velocity of dose change as a function of depth in tissue. From skin to maximum dose value, the increase of G-function is more accentuated for γ-rays than for β-particles while after that the G-function decreasing is less sharp for γ-rays. Finally, we’ll discuss about the advantages in terms of radiation protection of γ-rays used in radiotherapy.
基金This work was supported by the Ministry of Science and Technology(No.2020YFE0202001)by the National Natural Science Foundation of China(Nos.11961141004 and 12205160)Tsinghua University Initiative Scientific Research Program.
文摘The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collecting the Čerenkov light in the medium induced by the fast electrons generated in the Compton scattering or electromagnetic shower of the incident γray. Two types of detectors based on pure water and lead glass as sensitive materials were designed for this purpose. The γresponse and optical photon propagation in the detectors were simulated based on electromagnetic and optical processes in Geant4. The inherent energy resolutions of 0.022(4) + 0.51(2)∕E^(1/2)_(γ) for water and 0.0026(3) + 0.446(3)∕E^(1/2)_(γ) for lead glass were obtained. The geometry sizes of the lead glass and water were optimized to 30 cm × 30 cm × 30 cm and 60 cm × 60 cm ×120 cm, respectively, to detect high-energy γ-rays at 160 MeV. The Hough transform method was applied to reconstruct the direction of the incident γ-rays, providing the ability to experimentally distinguish the high-energy γ-rays produced in the reactions on the target from random background cosmic-ray muons.
文摘A high-pressure chamber filled with natural xenon (XeHPC) under initial pressure 270 bar was irradiated during 43 hours by braking γ-rays with a maximum energy of 10 MeV at the MT-25 electron accelerator at an average beam intensity of 20-22 μA. After about 14 hours of irradiation, the pressure in the XeHPC dropped to 185 bar and did not change till the end of the irradiation cycle. Upon completion of exposure, part of the gas from XeHPC was bypassed into a separate reservoir to measure the xenon composition by mass-analyzer QMA-200. After the opening of the XeHPC, an inner assembly without xenon was fixed at the Ge-detector for measurement of γ-spectra of radionuclides produced in the XeHPC and the background during 15 hours. A visual inspection of the inner assembly indicated that the surfaces of its elements were covered with a siskin green layer. Using SEM (scanning electron microscopy) studies and MPRA (microprobe roentgen analysis) , the element compositions of the synthesized micro-objects and micro-particles were determined. In order to explain the observed anomalies in the formation of new elements in the micro-particles and micro-objects, nuclear fission and synthesis reactions should be used.
基金Supported by Being Science and Technology Institute "Bud Plan" Project(No.022)~~
文摘[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The strains were screened by plate confrontation method and Oxford cup diffusion. [Result] The curves of the relationship of irradiation dose and mutation and lethal rate were obtained. The results showed that lethal rate increased with the increasing of irradiation dose. The lethal rate of 1 000 Gy irradiation dose reached 99.50%. The mutation rate increased below 500 Gy and decreased above 500 Gy. The highest mutation rate occurred when the irradiation dose was between 400 and 700 Gy, and the average mutation rate was above 15%. The optimal irradiation dose was 500 Gy, when the average mutation rate was 26.51% and lethal rate was 77.71%. [Conclusion] This study provided references for γ-rays irradiation mutation of Bacillus subtilis.
文摘[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety 'Favorita',and the genomic mutations in VM1 and VM2 gene rations in treatments with different doses were analyzed by SRAP markers.[Resalt] Thirty pairs of SRAP primers out of 88 pairs exhibited polymorphism with a rate of 34.1% in the bulked selection of VM1 generation.A total of 225 bands were obtained,of which 64 were polymorphic with a rate of 28.4%.The polymorphism was reflected in the forms of deleted bands and added bands.Based on the result of the bulked selection of VM1 generation,25 primers with polymorphism were selected to scan VM2 generation.Five primers performed poorly,and nine of the rest 20 pairs revealed polymorphism and obtained nine polymorphic bands,of which only four bands were detected in VM1 generation and the other five ones were newly deleted bands.Only 9.8% of the bands detected in VM1 generation were obtained in VM2 generation.Eventually,nine stable and dear polymorphic bands were recovered and cloned,and DNA sequences of six bands of them were acquired by sequencing.According to the comparative analysis,five fragments sequences were similar to potato chromosome with a similarity rate of 77%-89%,three of them located at the resistance gene cluster; another one fragment had a similarity of 93% with some regions of the No.5 chromosome in tomato.[Conclusion] 60Co γ-ray irradiation can cause mutation of genomic DNA in potato;there is no significant correlation between the number of polymorphic bands and the irradiation dose; potymorphic bands are characterized by a larger number of deleted bands than that of the added ones.
基金This work was supported by the National Natural Science Foundation of China (No.21373197), the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities (WK2060140018).
文摘We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.
基金This work was supported by the Natural Science Foundation of Henan Province under grant No. 0611023900.
文摘By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405085)the Jiangsu Provincial Natural Science Fund,China(Grant No.BK20130789)
文摘Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold(LIDT),which includes defects, surface roughness, packing density and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm^2 to 12 J/cm^2, i.e., 50% increase, after the film has been irradiated by 2.2×10^(13)/cm^2 β-ray, the particle irradiation can be used as a controllable and desirable postprocessing method to improve the resistance to laser induced damage.
文摘This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almost independent of the flow regime. Improvement has been achieved on the measurement accuracy of phase fractions.
基金support by the National Natural Science Foundation of China(No.50573073).
文摘A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the grafted membranes. The surface morphology of the grafted membrane was observed from scanning electron microscopy (SEM). Pure water flux measurements showed that water flux of the grafted membrane decreased with the increase of temperature, while that of chitosan membrane was constant. It was proved that grafted membrane was sensitive to temperature.
文摘A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization was carded out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis could generate radicals directly on the monomer avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns were studied in the modes of CEC, p-CEC and low pressure-driven separation, all the tests exhibited reversed-phase character. It provided a viable alternative to either thermally initiated or photo polymerization method for the preparation of monolithic columns.
基金National Natural Science Foundation of China (10075029 and 10375034)
文摘The changes of DC characteristics of SiGe HBT after being submitted to γ-ray irradiation of 700 krad, 7 000 krad and 10 000 krad were compared to those of Si BJT. Generally speaking, Ib and Ib- Ib0 increase with the doses increasing. For SiGe HBT, with the doses increasing, Ic and Ic-Ic0 as well as the related changes of the current gain (β) will decrease at higher Vbe, while for Si BJT, with the doses increasing, after irradiation, Ib and Ic-Ic0 increase; ,8 and its related changes also decrease with their differences, however, tending to be very small at high doses of 7 000 krad and 10 000 krad. Moreover, given the same doses, the decreases of,a are much larger than SiGe HBT, which shows that SiGe HBT's anti-radiation performance proves to be better than Si BJT. Still, in SiGe HBT, some strange phenomena were observed: Ic-Ic0 will increase after the radiation of 7 000 krad in less than 0.65 V and as will ,8 in less than 0.75 V. The mechanism of radiation-induced change in DC characteristies was also discussed.
基金Project supported by the National Natural Science Foundation of China and Ford-China R & D Fund.
文摘The effect of γ-ray irradiation on the mechanical properties of high densitypolyethylene(HDPE) filled with sericite-tridymite-cristobalite(STC) was studied. The ex-perimental results show that γ-ray irradiation can improve the affinity between HDPE andSTC, and the dispersion of STC in HDPE matrix. Compared with HDPE/STC (80/20)blend, the yield stress and impact strength of irradiated HDPE (10kGy)/STC (80/20) blendare increased from 22.8 MPa and 70J/m to 28.5 MPa and 144J/m. The yield stress andimpact strength of HDPE/irradiated HDPE/STC (48/32/20) are 27.8MPa and 210J/m,respectively.
基金the National Natural Science Foundation of China (29404031 ) and the Korea Science and Technology Foundation
文摘Grafting copolymerization of styrene and acrylic acid onto polypropylene fabric had been studied by using a pre-irradiation technique. The polypropylene fabric Samples were irradiated by Y-ray and electron beam under the conditions of air and nitrogen gas, respectively. The effect of absorbed dose, monomer concentration in solvent, reaction temperature and reaction time on the degree of grafting were determined. The effects of metallic salts and sulphuric acid on the grafting yield of acrylic acid were also examined. The samples irradiated by electron beam give a much higher degree of grafting than those by Y -ray when styrene was grafted to polypropylene fabric. However, the grafting yield of acrylic acid on polypropylene fabric in the presence of metallic salts and sultric acid showed the opposite results from the case of styrene. This effect is reasonably interpreted by assuming that the grafting is dominated by trapped radicals and peroxides in pre-irradiated polypropylene.
基金This work is financially supported by Strategic Priority Research Program of the CAS(Grant No.XDA18000000)Youth Innovation Promotion Association of CAS(Grant No.2015097).
文摘Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on endurance and access speed,which is considered to be one of the candidates to replace SRAM for space application.However,little attention has been given to theγ-ray irradiation effect on the SOT-MRAM device yet.Here,we report the Co-60 irradiation results for both SOT(spin-orbit torque)magnetic films and SOT-Hall devices with the same stacks.The properties of magnetic films are not affected by radiation even with an accumulated dose up to 300 krad(Si)while the magnetoelectronic properties of SOTHall devices exhibit a reversible change behavior during the radiation.We propose a non-equilibrium anomalous Hall effect model to understand the phenomenon.Achieved results and proposed analysis in this work can be used for the material and structure design of memory cell in radiation-hardened SOT-MRAM.
基金supported in part by the National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2020212015)National Natural Science Foundation of China(No.12175157)the Fundamental Research Funds for the Central Universities(No.YJ202025)。
文摘10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we report highly efficientγ-ray generation in the parameter regime of 10 PW-class lasers at an intensity level of 10^(23)W cm^(–2)interaction with heavy-ion plasmas which have large-scale preplasmas.The laser-to-γ-ray(>1 MeV)energy conversion efficiency reaches close to 60%with an above 10^(14)γ-photons/pulse.The averageγ-photon energy is about 14 MeV with the highest photon energy exceeding 1 GeV.The high-energyγ-photons are mainly directed in the forward direction.We also find that plane target geometry is efficient enough for high powerγ-ray radiation,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.
基金Supported by the National Natural Science Foundation of China(31600543)Anhui Provincial Natural Science Foundation(1708085MC57)the State Forestry Administration,China("948"Project:#2014-4-52)
文摘Mutations induced from tissue culture are easily to be separated,which might be propagated in the same medium,especially for the color-leaf ornamental grass,Oxalis triaggularis purpurea.Mutations of the ornamental traits in the tissue culture bottle could be investigated easily.The 35 d regeneration system group showed the lowest adventitious bud number and adventitious root number among 4 inoculation dates by 50 Gy dose of ^(60)Coγ radiation.More studies were carried out based on the 35d differentiation state of O.triangularis purpurea regeneration system.The 35 d regeneration system was then irradiated by 10,25 and 50 Gy doses of ^(60)Coγ rays.Numbers of adventitious buds and roots induced from the regeneration system were cut down with the increment of radiation doses.Seedling length was not distinctly reduced at the absorbed doses of 10 and 25 Gy,but reduced distinctly under 50 Gy of ^(60)Coγ irradiation.The optimal irradiation dose for 35 d O.triangularis regeneration system survival and mutation induction was approximately 25 Gy.The M_2 phenotypic mutation rate was 2.9%,especially,and the leaf number mutation accounted for 76%of the total mutation.The phenotypic mutations,especially in the 10 Gy group,on 0.1 m M Vc containing MS medium were recovered,which indicated that ROS plays a key role in the phenotypic mutation induced by ^(60)Coγ -rays.
基金supported by the National Key Project of Basic Research of China (G1998061312)
文摘The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)3 phosphor under the β-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL glow curve of NaSr4(BO3)3:Ce3+ phosphor was composed of only one peak. TL kinetic parameters of NaSr4(BO3)3:Ce3+ were deduced by the peak shape method, the activation energy (E) was 0.590 eV and the frequency factor was 1.008×10^6S^-1. TL dose response was linear in the range of measurement. The 3-dimensional (3D) TL emission spectrum was also recorded, the emission spectrum consisted of two bands located at 441 and 479 nm respectively, corresponding to the characteristic 4f^05d^1→2F(5/2,7/2) transitions of the Ce3+ ion. The fading behavior of the NaSr4(BO3)3:Ce3+ phosphor over a period of 15 d was also studied.
文摘Residual electrical resistivity due to short-range order has been calculated for Cu100-xAlx (x=9.13,13.56, 14.5 and 14.76 in at pct) alloys using pseudopotential approach, and the results have been discussed in the light of experimental studies of the local-order structure of these alloys. In case of Cu85.5Al14.5, change in the total residual electrical resistivity due to neutron-irradiation effects has been estimated by including contributions from the short-range order and static atomic displacement correction. Our results show a decrease in the residual resistivity in the irradiated Cu-Al solid solution as compared to the unirradiated sample. This is in accordance with the experimental results