Water was a key factor restricting the plantation in sandy areas. Foliar δ^(13)C value regarded as an indicator of longterm water use efficiency(WUE) of plants was generally used to evaluate the adaptability of plant...Water was a key factor restricting the plantation in sandy areas. Foliar δ^(13)C value regarded as an indicator of longterm water use efficiency(WUE) of plants was generally used to evaluate the adaptability of plants to arid and semi-arid environment. In Horqin sandy land of China, the foliar δ^(13)C values of 114 species in 35 families naturally growing in the area, and 15 species of sand-fixing trees and shrubs were measured and analyzed in 2012. The results showed that 97 species in all 114 species were C_3 plants and only 17 species were C_4 plants. Most C_4 plants belonged to Gramineae family. The foliar δ^(13)C value of C_3 plants was between -25.000 and -31.075‰ with an average of-28.226‰, while those of C_4 plants between -12.578 and -16.334‰, with an average of -13.678‰. The δ^(13)C values of mature leaves collected in August were averagely 0.85‰ less than that of juvenile leaves collected in June. The foliar δ^(13)C values and WUE of 15 sand-fixing tree species in Horqin sandy land ranked in the order as: S.vulgaris >H.rhamnoides >C.ovata >P.mongolica >T.chinensis >R.typhina >S.matsudana >E.angustifolia >U.pumila >S.gordejevii >X.sorbifolia >C.microphylla >H.fruticosum >C.korshinskii >E.bungeanus.展开更多
Isotopic data obtained from the dinosaur eggshells and pedogenic nodules(pedonodules)are interpreted in terms of palaeoclimatology.The material studied originated from the Bayn Dzak locality,Southern Gobi Aimak,Mongol...Isotopic data obtained from the dinosaur eggshells and pedogenic nodules(pedonodules)are interpreted in terms of palaeoclimatology.The material studied originated from the Bayn Dzak locality,Southern Gobi Aimak,Mongolia,having Late Cretaceous(Campanian)age.Stratigraphically the Bayn Dzak locality belongs to the Djadokhta Formation.All the present data(lithology,type of paleosols,FPS-profiles,geochemistry),and the isotopic characteristics of the selected samples show unequivocally that the environments of the Bayn Dzak area in Late Cretaceous(Campanian)time were warm to summer-hot,seasonally dry.Wet seasons(most probably,which took place in the winter time)were not longer than two months with not more than 400 mm precipitation per year.The distribution of isotope data in the dinosaur eggshells show the main relation,which is the dependence ofδ^13C andδ^18O values,i.e.specimens with heavy carbon isotope ratios are characterized by lighter oxygen isotope composition and conversely.Thus,theδ^13C andδ^18O values of the dinosaur eggshells display a clear positive correlation.It may be consequent both with the difference of the isotope composition of diet of the egg-lying animals modified by physicochemical isotope fractionation due to metabolism and changes in the isotope environment,and/or diagenetic alteration of the eggshell carbonate.Obtained isotopic data on the studied dinosaur eggshell fragments and the soil carbonates lend support to our assumption that diagenesis did not play significant role in changing the isotopic values.The distribution ofδ^13C andδ^18O values in eggshells and in pedogenic carbonates shows the visible opposite dependencies.展开更多
基金Supported by the Scientific Research Project of Hebei Higher Education(QN2015306)National Key Technology Research and Development Program of China during the 12th Five-Year Plan(2012BAD16B0302)
文摘Water was a key factor restricting the plantation in sandy areas. Foliar δ^(13)C value regarded as an indicator of longterm water use efficiency(WUE) of plants was generally used to evaluate the adaptability of plants to arid and semi-arid environment. In Horqin sandy land of China, the foliar δ^(13)C values of 114 species in 35 families naturally growing in the area, and 15 species of sand-fixing trees and shrubs were measured and analyzed in 2012. The results showed that 97 species in all 114 species were C_3 plants and only 17 species were C_4 plants. Most C_4 plants belonged to Gramineae family. The foliar δ^(13)C value of C_3 plants was between -25.000 and -31.075‰ with an average of-28.226‰, while those of C_4 plants between -12.578 and -16.334‰, with an average of -13.678‰. The δ^(13)C values of mature leaves collected in August were averagely 0.85‰ less than that of juvenile leaves collected in June. The foliar δ^(13)C values and WUE of 15 sand-fixing tree species in Horqin sandy land ranked in the order as: S.vulgaris >H.rhamnoides >C.ovata >P.mongolica >T.chinensis >R.typhina >S.matsudana >E.angustifolia >U.pumila >S.gordejevii >X.sorbifolia >C.microphylla >H.fruticosum >C.korshinskii >E.bungeanus.
基金Supported by the State Program of the Geological Institute of Russian Academy of Sciences(No.0135-2019-0044)RFBR Project(No.18-04-00322)。
文摘Isotopic data obtained from the dinosaur eggshells and pedogenic nodules(pedonodules)are interpreted in terms of palaeoclimatology.The material studied originated from the Bayn Dzak locality,Southern Gobi Aimak,Mongolia,having Late Cretaceous(Campanian)age.Stratigraphically the Bayn Dzak locality belongs to the Djadokhta Formation.All the present data(lithology,type of paleosols,FPS-profiles,geochemistry),and the isotopic characteristics of the selected samples show unequivocally that the environments of the Bayn Dzak area in Late Cretaceous(Campanian)time were warm to summer-hot,seasonally dry.Wet seasons(most probably,which took place in the winter time)were not longer than two months with not more than 400 mm precipitation per year.The distribution of isotope data in the dinosaur eggshells show the main relation,which is the dependence ofδ^13C andδ^18O values,i.e.specimens with heavy carbon isotope ratios are characterized by lighter oxygen isotope composition and conversely.Thus,theδ^13C andδ^18O values of the dinosaur eggshells display a clear positive correlation.It may be consequent both with the difference of the isotope composition of diet of the egg-lying animals modified by physicochemical isotope fractionation due to metabolism and changes in the isotope environment,and/or diagenetic alteration of the eggshell carbonate.Obtained isotopic data on the studied dinosaur eggshell fragments and the soil carbonates lend support to our assumption that diagenesis did not play significant role in changing the isotopic values.The distribution ofδ^13C andδ^18O values in eggshells and in pedogenic carbonates shows the visible opposite dependencies.