Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of ino...Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.展开更多
A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the rad...A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.展开更多
Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes (delta C-13 and delta N-15) for Coilia nasus from the lower Yangtze River and the adja...Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes (delta C-13 and delta N-15) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. delta C-13 signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) (P < 0.05). By contrast, delta N-15 signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group (P < 0.05). Basing on delta C-13 and delta N-15 signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in delta N-15 but depleted in delta C-13, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply delta N-15 and delta C-13 to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes (delta N-15 and delta C-13) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.展开更多
The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few s...The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.展开更多
基金supported by the National Key Research and development Program of China (2016YFC0502602)the National Natural Science Foundation of China (U1612441)the project of high-level innovative talents of Guizhou Province [2015(4035)]
文摘Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.
基金supported by the National Natural Science Foundation of China (41971104)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment+1 种基金Chinese Academy of Sciences (CASSKLLQG1817)the Qilian Mountain National Park Research Center (Qinghai)(GKQ2019-01)。
文摘A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.
基金financially supported by the Special Fund for Agro-scientific Research in the Public-Interest(Grant No.201203065)the National Natural Science Foundation of China(Nos.31172407+1 种基金1472280)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123104110006)
文摘Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes (delta C-13 and delta N-15) for Coilia nasus from the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on C. nasus. delta C-13 signatures of C. nasus sampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) (P < 0.05). By contrast, delta N-15 signatures of C. nasus in ZS, CM, and JJ groups were significantly lower than those in PYL group (P < 0.05). Basing on delta C-13 and delta N-15 signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromous C. nasus ranged from 2.90 to 3.04, whereas that of non-anadromous C. nasus was 4.38. C. nasus occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively. C. nasus in Poyang Lake were significantly more enriched in delta N-15 but depleted in delta C-13, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply delta N-15 and delta C-13 to population assignment studies of C. nasus in the Yangtze River and its affiliated waters. Analysis of stable isotopes (delta N-15 and delta C-13) is shown to be a useful tool for discriminating anadromous and non-anadromous C. nasus.
基金the Higher Education Commission Pakistan for funding the lab research under its International Research Support Initiative Program (IRSIP) programthe Department of Environmental Science, Quaid-i-Azam University, Islamabad (especially Environmental Hydro geochemistry Lab)the Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, for technical support in conducting lab analysis
文摘The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.