In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,...In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.展开更多
In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new...In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.展开更多
A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the ...A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the problem of convergence of Gauss iteration of a kind of pre-mean type mappings generated by the exponential and logarithmic functions.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, we will introduce a class of 5-dimensional functions Φ and prove that a family of self-mappings {Ti,j} iεN in 2-metric space have an unique common fixed point if 1) {Ti,j} iεN satisfies Φj-contracti...In this paper, we will introduce a class of 5-dimensional functions Φ and prove that a family of self-mappings {Ti,j} iεN in 2-metric space have an unique common fixed point if 1) {Ti,j} iεN satisfies Φj-contractive condition, where ΦjεΦ, for each jεN;2) Tm,μ n,v for all m,n,μ,vεN with μ ≠ v . Our main result generalizes and unifies many known unique common fixed point theorems in 2-metric spaces.展开更多
Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed poin...Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.展开更多
Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding r...Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.展开更多
In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a ...In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.展开更多
In this paper, first we introduce notions of (α, Ψ)-contractive and (α)-admissible for a pair of map and prove a coupled coincidence point theorem for compatible mappings using these notions. Our work extends and g...In this paper, first we introduce notions of (α, Ψ)-contractive and (α)-admissible for a pair of map and prove a coupled coincidence point theorem for compatible mappings using these notions. Our work extends and generalizes the results of Mursaleen et al. [1]. At the end, we will provide an example in support of our result.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)。
文摘In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.
文摘In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.
文摘A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the problem of convergence of Gauss iteration of a kind of pre-mean type mappings generated by the exponential and logarithmic functions.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
文摘In this paper, we will introduce a class of 5-dimensional functions Φ and prove that a family of self-mappings {Ti,j} iεN in 2-metric space have an unique common fixed point if 1) {Ti,j} iεN satisfies Φj-contractive condition, where ΦjεΦ, for each jεN;2) Tm,μ n,v for all m,n,μ,vεN with μ ≠ v . Our main result generalizes and unifies many known unique common fixed point theorems in 2-metric spaces.
文摘Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.
基金Foundation items:the National Ntural Science Foundation of China(19771058)the Natural Science Foundation of Education Department of Sichuan Province(01LA70)
文摘Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.
文摘In this paper, we give existence theorems of common fixed points for two mappings with a weakly C*-contractive condition on partially ordered 2-metric spaces and give a sufficient condition under which there exists a unique common fixed point.
文摘In this paper, first we introduce notions of (α, Ψ)-contractive and (α)-admissible for a pair of map and prove a coupled coincidence point theorem for compatible mappings using these notions. Our work extends and generalizes the results of Mursaleen et al. [1]. At the end, we will provide an example in support of our result.
文摘背景:腰椎小关节炎是引起下腰痛的一个主要原因,目前主要依靠MRI进行初步定性诊断,但仍有一定漏诊、误诊的概率发生,因此MR T2^(*)mapping成像技术有望成为定量检查腰椎小关节炎软骨损伤的重要检测手段。目的:探讨MR T2^(*)mapping成像技术在定量分析腰椎小关节炎软骨损伤退变中的应用价值。方法:收集南京医科大学第四附属医院2020年4月至2022年3月门诊或住院合并下腰痛共110例患者,设为病例组;同时招募无症状志愿者80例,设为对照组。对所有纳入对象L1-S1的小关节行3.0 T MR扫描,获取T2^(*)mapping横断位图像和T2WI图像,分别对所有小关节软骨进行Weishaupt分级及T2^(*)值测量,收集数据并行统计学分析。不同小关节Weishaupt分级之间小关节软骨T2^(*)值比较采用单因素方差分析。结果与结论:①经统计分析发现,病例组腰椎小关节软骨T2^(*)值(17.6±1.5)ms明显较对照组(21.4±1.3)ms降低,差异有显著性意义(P<0.05);②在病例组中,随着腰椎小关节Weishaupt分级增加,小关节软骨T2^(*)值也呈逐渐下降趋势,且这种差异有显著性意义(P<0.05);③提示T2^(*)mapping能够较好地显示腰椎小关节软骨损伤的早期病理变化,腰椎小关节软骨的T2^(*)值能够定量评估腰椎小关节的软骨损伤程度;T2^(*)mapping成像技术能为影像学诊断腰椎小关节炎软骨早期损伤提供很好的理论依据,具有重要的临床应用价值。