In this paper, a modified implicit Kirk-multistep iteration scheme and a strong convergence result for a general class of maps in a normed linear space was established. It was also shown that the convergence of this i...In this paper, a modified implicit Kirk-multistep iteration scheme and a strong convergence result for a general class of maps in a normed linear space was established. It was also shown that the convergence of this iteration scheme is equivalent to the convergency of some other implicit Kirk-type iteration (implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit Kirk-Mann iterations) for the same class of maps. Some numerical examples were considered to show that the equivalence of convergence results to the fixed point is true. The results unify most equivalence results in literature.展开更多
The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intr...The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intrinsic and extrinsic parameters of a reference material is built and transformed in equivalence relation. Extrinsic parameters concern the shape of their experimental tensile force/elongation curve, however, intrinsic parameters deal with Swift hardening law coupled with an isotropic damage variable. The relationship is carried out from a statistical characterization of a material reference (standard-steel E24). It based on multiple linear regression of a data set obtained according to a full factor design of numerical simulations of mechanical tensile tests. All materials satisfying this equivalence relation belong to the same equivalence class. This is motivated by observing that gathered materials must behave somewhat like the reference material. The material parameters can be immediately identified by only one task by running the found relationship. The current method facilitates the identification procedure and offers a substantial savings in CPU time. However it just needs only one simulation for the identification of similar behavior instead of the few hundred required when using other methods.展开更多
The concept of graphlike manifolds was presented in [1] and the problem of counting the homeomorphic classes of graphlike manifolds has been studied in a series of articles, e.g., [1~8]. In this paper we suggest an a...The concept of graphlike manifolds was presented in [1] and the problem of counting the homeomorphic classes of graphlike manifolds has been studied in a series of articles, e.g., [1~8]. In this paper we suggest an approach based on the graph colouring, Abelian group and the combinatorial enumeration method.展开更多
Let A be a normal class of algebras. In the present paper, we characterize the following four problems for A: for which radical class R, there holds that(1) R(i1∧i2) = R(i1)∧R(i2);(2) R(i1∨i2) = R(i1)∨R(i2);(3) (i...Let A be a normal class of algebras. In the present paper, we characterize the following four problems for A: for which radical class R, there holds that(1) R(i1∧i2) = R(i1)∧R(i2);(2) R(i1∨i2) = R(i1)∨R(i2);(3) (i1∧i2) =i1∧i2;(4) (i1∨i2) = i1∨i2, for arbitrary algebra a∈A and any i1,i2∈La,where j denotes the ideal of a uniquely determined by R(a/j) = j/j?展开更多
文摘In this paper, a modified implicit Kirk-multistep iteration scheme and a strong convergence result for a general class of maps in a normed linear space was established. It was also shown that the convergence of this iteration scheme is equivalent to the convergency of some other implicit Kirk-type iteration (implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit Kirk-Mann iterations) for the same class of maps. Some numerical examples were considered to show that the equivalence of convergence results to the fixed point is true. The results unify most equivalence results in literature.
文摘The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intrinsic and extrinsic parameters of a reference material is built and transformed in equivalence relation. Extrinsic parameters concern the shape of their experimental tensile force/elongation curve, however, intrinsic parameters deal with Swift hardening law coupled with an isotropic damage variable. The relationship is carried out from a statistical characterization of a material reference (standard-steel E24). It based on multiple linear regression of a data set obtained according to a full factor design of numerical simulations of mechanical tensile tests. All materials satisfying this equivalence relation belong to the same equivalence class. This is motivated by observing that gathered materials must behave somewhat like the reference material. The material parameters can be immediately identified by only one task by running the found relationship. The current method facilitates the identification procedure and offers a substantial savings in CPU time. However it just needs only one simulation for the identification of similar behavior instead of the few hundred required when using other methods.
文摘The concept of graphlike manifolds was presented in [1] and the problem of counting the homeomorphic classes of graphlike manifolds has been studied in a series of articles, e.g., [1~8]. In this paper we suggest an approach based on the graph colouring, Abelian group and the combinatorial enumeration method.
基金The NSF (2024201051) of Liaoning Education Department.
文摘Let A be a normal class of algebras. In the present paper, we characterize the following four problems for A: for which radical class R, there holds that(1) R(i1∧i2) = R(i1)∧R(i2);(2) R(i1∨i2) = R(i1)∨R(i2);(3) (i1∧i2) =i1∧i2;(4) (i1∨i2) = i1∨i2, for arbitrary algebra a∈A and any i1,i2∈La,where j denotes the ideal of a uniquely determined by R(a/j) = j/j?