Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstan...Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.展开更多
Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (s...Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research.展开更多
The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions pres...The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.展开更多
基金supported by the National Key R&D Program of China(No.2017YFE0301201)National Natural Science Foundation of China(No.11975038)the funding support from the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2021ZZ03)。
文摘Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.
基金Project supported by the Tsinghua University Initiative Scientific Research Program(No.20131089351),China
文摘Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research.
文摘The Helmholtz SchrSdinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz-Schrodinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrodinger equation are needed for complicated quantum structures with hard wall boundary conditions.