In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c...In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).展开更多
We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and...We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and the length of side chains and bifurcation positions.We found that the dichroic ratio was increased from 2.37 to 5.23 when the side chain was longer and the bifurcation position was away from the backbone.The π-π stacking distance was decreased from 3.67 A to 3.61 A when the bifurcation position was away from the backbone because of its smaller hindrance and the d-spacing of the(100)was increased from 20.06 A to 25.21 A when the side chain was longer.All the polymers were adopted an edge-on orientation with the backbone paralleled with the long axis of fibers.The weak interaction of side-chain in ⅡDDT-C4 was beneficial for the molecules being rearranged in parallel during the contact line receding and the strong n-n interaction could accelerate the interchain assembly of the parallel molecules through π-π interaction to form aligned fibers.展开更多
基金supported by the National Basic Research Program of China (No. 2015CB932200)the CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (No. 116134KYSB20160130)+2 种基金the Natural Science Foundation of Anhui Province (No. 1508085SMF224)the National Natural Science Foundation of China (No. 51474201)the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607)
文摘In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).
基金supported by the National Natural Science Foundation of China (Nos. 21334006, 51577138, 21474113)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020300)
文摘We chose a series of isoindigo-based conjugated polymer(ⅡDDT,ⅡDDT-C3 and ⅡDDT-C4) with different length of side chains and bifurcation positions to investigate the relationship between the degree of alignment and the length of side chains and bifurcation positions.We found that the dichroic ratio was increased from 2.37 to 5.23 when the side chain was longer and the bifurcation position was away from the backbone.The π-π stacking distance was decreased from 3.67 A to 3.61 A when the bifurcation position was away from the backbone because of its smaller hindrance and the d-spacing of the(100)was increased from 20.06 A to 25.21 A when the side chain was longer.All the polymers were adopted an edge-on orientation with the backbone paralleled with the long axis of fibers.The weak interaction of side-chain in ⅡDDT-C4 was beneficial for the molecules being rearranged in parallel during the contact line receding and the strong n-n interaction could accelerate the interchain assembly of the parallel molecules through π-π interaction to form aligned fibers.