In this article, we introduce and investigate the concept of multivalued hybrid mappings in C AT(0) spaces by using the concept of quasilinearization. Also, we present a new iterative algorithm involving products of...In this article, we introduce and investigate the concept of multivalued hybrid mappings in C AT(0) spaces by using the concept of quasilinearization. Also, we present a new iterative algorithm involving products of Moreau-Yosida resolvents for finding a common element of the set of minimizers of a finite family of convex functions and a common fixed point of two multivalued hybrid mappings in C AT(0) spaces.展开更多
A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and it...A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and its Lipschitz continuity is presented, An iterative algorithm for approximating the solutions of generalized implicit wriational- like inclusions is suggested and analyzed. The convergence of iterative sequences generated by the algorithm is also proved,展开更多
In this paper,we discuss the calculations of fixed point indexs for multivalued condensing mappings and k-set-contraction mappings,obtain some theorems on the eigenvalues and the fixed points under the suitable condit...In this paper,we discuss the calculations of fixed point indexs for multivalued condensing mappings and k-set-contraction mappings,obtain some theorems on the eigenvalues and the fixed points under the suitable conditions. Our conclusions improve and generalize some well-known results.展开更多
We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approx...We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.展开更多
The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the co...The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the concepts of the limits of multivalued (S) and (S) + type mappings. These kinds of mappings contain many monotone type mappings, such as maximal monotone mapping, bounded pseudo-monotone mapping and bounded generalized pseudo-monotone mapping, as its special cases. In the second part we define the pseudo-degree for (S) type mapping and the degree for (S)+ type mapping. These two kinds of degrees are all the generalizations of the degree defined by Browder[1,2] As applications, we utilize the degree theory presented in part 2 to study the existence of solutions for the multivalued operator equations (see part 3) and to obtain some new fixed point theorems in part 4.展开更多
We introduce a k-strictly pseudononspreading multivalued in Hilbert spaces more general than the class of nonspreading multivalued. We establish some weak convergence theorems of the sequences generated by our iterati...We introduce a k-strictly pseudononspreading multivalued in Hilbert spaces more general than the class of nonspreading multivalued. We establish some weak convergence theorems of the sequences generated by our iterative process. Some new iterative sequences for finding a common element of the set of solutions for equilibrium problem was introduced. The results improve and extend the corresponding results of Osilike Isiogugu [1] (Nonlinear Anal.74 (2011)) and others.展开更多
In the present paper, some new almost fixed point theorems and fixed point theorems for lower semicontinuous type multivalued mappings are obtained in metrizable H-spaces.
In this article, we prove some strong and weak convergence theorems for quasi-nonexpansive multivalued mappings in Banach spaces. The iterative process used is independent of Ishikawa iterative process and converges f...In this article, we prove some strong and weak convergence theorems for quasi-nonexpansive multivalued mappings in Banach spaces. The iterative process used is independent of Ishikawa iterative process and converges faster. Some examples are provided to validate our results. Our results extend and unify some results in the contemporary literature.展开更多
Since the appearance of T. C. Lim’s fixed point theorem for multivalued nonexpansive mappings in uniformly convex spaces in 1974, various generalizations and modifications have been obtained (e.g. [2, 3] and other re...Since the appearance of T. C. Lim’s fixed point theorem for multivalued nonexpansive mappings in uniformly convex spaces in 1974, various generalizations and modifications have been obtained (e.g. [2, 3] and other references in [4, 5]). However, the corresponding fixed point problem for Banach spaces of normal structure remains open. The present report shall give a positive answer to it.展开更多
文摘In this article, we introduce and investigate the concept of multivalued hybrid mappings in C AT(0) spaces by using the concept of quasilinearization. Also, we present a new iterative algorithm involving products of Moreau-Yosida resolvents for finding a common element of the set of minimizers of a finite family of convex functions and a common fixed point of two multivalued hybrid mappings in C AT(0) spaces.
基金Project supported by the Key Science Foundation of Sichuan Education Department of China (No.2003A081)
文摘A new class of g-η-monotone mappings and a class of generalized implicit variational-like inclusions involving g-η-monotone mappings are introduced. The resolvent operator of g-η-monotone mappings is defined and its Lipschitz continuity is presented, An iterative algorithm for approximating the solutions of generalized implicit wriational- like inclusions is suggested and analyzed. The convergence of iterative sequences generated by the algorithm is also proved,
文摘In this paper,we discuss the calculations of fixed point indexs for multivalued condensing mappings and k-set-contraction mappings,obtain some theorems on the eigenvalues and the fixed points under the suitable conditions. Our conclusions improve and generalize some well-known results.
基金the Natural Science Foundation of China (No. 10471151)the Educational Science Foundation of Chongqing (KJ051307).
文摘We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.
文摘The main purpose of this paper is devoted to generalizing the results of Browder[1,2]This paper consists of four parts. In the first part, we introduce the concepts of multivalued (S) and (S), type mappings and the concepts of the limits of multivalued (S) and (S) + type mappings. These kinds of mappings contain many monotone type mappings, such as maximal monotone mapping, bounded pseudo-monotone mapping and bounded generalized pseudo-monotone mapping, as its special cases. In the second part we define the pseudo-degree for (S) type mapping and the degree for (S)+ type mapping. These two kinds of degrees are all the generalizations of the degree defined by Browder[1,2] As applications, we utilize the degree theory presented in part 2 to study the existence of solutions for the multivalued operator equations (see part 3) and to obtain some new fixed point theorems in part 4.
文摘We introduce a k-strictly pseudononspreading multivalued in Hilbert spaces more general than the class of nonspreading multivalued. We establish some weak convergence theorems of the sequences generated by our iterative process. Some new iterative sequences for finding a common element of the set of solutions for equilibrium problem was introduced. The results improve and extend the corresponding results of Osilike Isiogugu [1] (Nonlinear Anal.74 (2011)) and others.
基金This work is supported by National Natural Science Foundation of China and Natural Science Foundation of the Yunnan Province of China
文摘In the present paper, some new almost fixed point theorems and fixed point theorems for lower semicontinuous type multivalued mappings are obtained in metrizable H-spaces.
文摘In this article, we prove some strong and weak convergence theorems for quasi-nonexpansive multivalued mappings in Banach spaces. The iterative process used is independent of Ishikawa iterative process and converges faster. Some examples are provided to validate our results. Our results extend and unify some results in the contemporary literature.
文摘Since the appearance of T. C. Lim’s fixed point theorem for multivalued nonexpansive mappings in uniformly convex spaces in 1974, various generalizations and modifications have been obtained (e.g. [2, 3] and other references in [4, 5]). However, the corresponding fixed point problem for Banach spaces of normal structure remains open. The present report shall give a positive answer to it.