期刊文献+
共找到828,478篇文章
< 1 2 250 >
每页显示 20 50 100
WELL-POSEDNESS AND PEAKON SOLUTIONS FOR A HIGHER ORDER CAMASSA-HOLM TYPE EQUATION
1
作者 CHEN shuang 《数学杂志》 2025年第1期57-71,共15页
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon... In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system. 展开更多
关键词 Generalized higher order Camassa-Holm type equation Local well-posedness PEAKON
下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS
2
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
下载PDF
BIOLOGICAL INVASION PROBLEM WITH FREE BOUNDARY NONLOCAL DIFFUSION EQUATION
3
作者 HE Yu-rong ZHANG Ya-rong 《数学杂志》 2025年第1期48-56,共9页
In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondl... In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number. 展开更多
关键词 Free boundary biological invasion differential equation
下载PDF
A Formulation of the Porous Medium Equation with Time-Dependent Porosity: A Priori Estimates and Regularity Results
4
作者 Koffi B. Fadimba 《Applied Mathematics》 2024年第10期745-763,共19页
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de... We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0. 展开更多
关键词 Porous Medium equation POROSITY Saturation equation A Priori Estimates Regularity Results
下载PDF
Some Modified Equations of the Sine-Hilbert Type
5
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equationS equation
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
6
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation Method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks
7
作者 田十方 李彪 张钊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si... By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation. 展开更多
关键词 equation SOLITON CYLINDRICAL
下载PDF
The Maxwell-Heaviside Equations Explained by the Theory of Informatons
8
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1003-1016,共14页
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio... In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg. 展开更多
关键词 GRAVITY Gravitational Field Maxwell equations Informatons
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
9
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
10
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 Heisenberg Group Sub-Elliptic equations REGULARITY Besov Spaces
下载PDF
On entire solutions of some Fermat type differential-difference equations
11
作者 LONG Jian-ren QIN Da-zhuan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期69-88,共20页
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ... On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14]. 展开更多
关键词 entire solutions differential-difference equations EXISTENCE finite order
下载PDF
Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg–de Vries equation in optical fibers
12
作者 兰中周 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期119-123,共5页
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro... Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced. 展开更多
关键词 complex modified KdV equation multi-soliton solutions breather-like BOUND-STATE
下载PDF
Wave interaction for a generalized higher-dimensional Boussinesq equation describing the nonlinear Rossby waves
13
作者 Rong SU Penghao JI Xiaojun YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1415-1424,共10页
Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to ... Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves. 展开更多
关键词 Rossby wave Boussinesq equation Complexiton solution Breather solution
下载PDF
ASYMPTOTIC BEHAVIOR NEAR THE BOUNDARY OF A LARGE SOLUTION TO SEMILINEAR POISSON EQUATION WITH DOUBLE-POWER NONLINEARITY
14
作者 Kazuhiro TAKIMOTO Yuxiao ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2083-2098,共16页
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio... We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term. 展开更多
关键词 large solution semilinear Poisson equation double-power nonlinearity ASYMPTOTICBEHAVIOR
下载PDF
Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
15
作者 Zachary M.Miksis Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期3-29,共27页
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ... Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Fixed-point fast sweeping methods Weighted essentially non-oscillatory(WENO)schemes Sparse grids Static Hamilton-Jacobi(H-J)equations Eikonal equations
下载PDF
THE GLOBAL EXISTENCE OF STRONG SOLUTIONS TO THERMOMECHANICAL CUCKER-SMALE-STOKES EQUATIONS IN THE WHOLE DOMAIN
16
作者 邹委员 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期887-908,共22页
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k... We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data. 展开更多
关键词 thermomechanical Cucker-Smale model Stokes equations strong solutions global existence
下载PDF
Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
17
作者 赵会超 马雷诺 解西阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期137-152,共16页
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ... This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities. 展开更多
关键词 soliton Riemann-Hilbert problem non-zero boundary conditions coupled Lakshmanan-Porsezian-Daniel equation
下载PDF
Continuous-Time Channel Prediction Based on Tensor Neural Ordinary Differential Equation
18
作者 Mingyao Cui Hao Jiang +2 位作者 Yuhao Chen Yang Du Linglong Dai 《China Communications》 SCIE CSCD 2024年第1期163-174,共12页
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe... Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes. 展开更多
关键词 channel prediction massive multipleinput-multiple-output millimeter-wave communications ordinary differential equation
下载PDF
A Numerical Study of Riemann Problem Solutions for the Homogeneous One-Dimensional Shallow Water Equations
19
作者 Pavlos Stampolidis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2024年第11期765-817,共53页
The solution of the Riemann Problem (RP) for the one-dimensional (1D) non-linear Shallow Water Equations (SWEs) is known to produce four potential wave patterns for the scenario where the water depth is always positiv... The solution of the Riemann Problem (RP) for the one-dimensional (1D) non-linear Shallow Water Equations (SWEs) is known to produce four potential wave patterns for the scenario where the water depth is always positive. In this paper, we choose four test problems with exact solutions for the 1D SWEs. Each test problem is a RP with one of the four possible wave patterns as its solution. These problems are numerically solved using schemes from the family of Weighted Essentially Non-Oscillatory (WENO) methods. For comparison purposes, we also include results obtained from the Random Choice Method (RCM). This study has three main objectives. Firstly, we outline the procedures for the implementation of the methods employed in this paper. Secondly, we assess the performance of the schemes in conjunction with a second-order Total Variation Diminishing (TVD) flux on a variety of RPs for the 1D SWEs (for both short- and long-time simulations). Thirdly, we investigate if a single method yields optimal outcomes for all test problems. Optimal outcomes refer to numerical solutions devoid of spurious oscillations, exhibiting high resolution of discontinuities, and attaining high-order accuracy in the smooth parts of the solution. 展开更多
关键词 1D Shallow Water equations Finite Volume WENO Schemes Multi-Resolution WENO Schemes Random Choice Method Riemann Problem
下载PDF
Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant
20
作者 Hadis Azin Fakhrodin Mohammadi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期220-238,共19页
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab... It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided. 展开更多
关键词 Barycentric rational interpolation Volterra-Fredholm integral equations Gaussian quadrature Runge's phenomenon
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部