The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio...The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.展开更多
Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha...Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.展开更多
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS...●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction.展开更多
Translation is an important medium of cultural communication.It is not a mere transfer of two languages,but the interaction of two cultures.Cultural misreading,which results from cultural discrepancy and translator’s...Translation is an important medium of cultural communication.It is not a mere transfer of two languages,but the interaction of two cultures.Cultural misreading,which results from cultural discrepancy and translator’s subjectivity,truly reflects where the blockade and conflict in the cultural communication is.Cultural misreading is an objective phenomenon that exists in the entire process of translation.This paper intends to make a comprehensive analysis and discussion on The History of the Former Han Dynasty:a Critical Translation with Annotations translated by Homer Hasenpflug Dubs.As for the reasons of cultural misreading,this paper divides them into three types—language,thinking habit,traditional culture.It is to be hoped that this paper will draw more attention from the translation circle to the phenomena,and make contribution to the development of literary translation.展开更多
This paper mainly studies the basic types of annotation and the analysis of its effective functional usage,so as to pay more attention to annotation in the translation of poetry and Fu.The annotation of this study bel...This paper mainly studies the basic types of annotation and the analysis of its effective functional usage,so as to pay more attention to annotation in the translation of poetry and Fu.The annotation of this study belongs to the category of paratext.Annotation is attributed to the paratext,undertakes its special function,enriches and perfects the paratext system.展开更多
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ...Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.展开更多
基金the National Key R&D Program of China(2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China(52025056)+4 种基金the National Natural Science Foundation of China(52305129)the China Postdoctoral Science Foundation(2023M732789)the China Postdoctoral Innovative Talents Support Program(BX20230290)the Open Foundation of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(2022JXKF JJ01)the Fundamental Research Funds for Central Universities。
文摘The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.
基金supported by the National Natural Science Foundation of China (Grant Nos.31972411,31722048,and 31630068)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2022PT23)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences,and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture and Rural Affairs,P.R.Chinasupported by NIFA,the Department of Agriculture,via UC-Berkeley,USA。
文摘Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.
基金Supported by Natural Science Foundation of Fujian Province(No.2020J011084)Fujian Province Technology and Economy Integration Service Platform(No.2023XRH001)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform(No.2022FX5)。
文摘●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction.
文摘Translation is an important medium of cultural communication.It is not a mere transfer of two languages,but the interaction of two cultures.Cultural misreading,which results from cultural discrepancy and translator’s subjectivity,truly reflects where the blockade and conflict in the cultural communication is.Cultural misreading is an objective phenomenon that exists in the entire process of translation.This paper intends to make a comprehensive analysis and discussion on The History of the Former Han Dynasty:a Critical Translation with Annotations translated by Homer Hasenpflug Dubs.As for the reasons of cultural misreading,this paper divides them into three types—language,thinking habit,traditional culture.It is to be hoped that this paper will draw more attention from the translation circle to the phenomena,and make contribution to the development of literary translation.
基金This paper is sponsored by the Postgraduate Creative Foundation of Gannan Normal University entitled“A Study on Dynamic Equivalence of Ecological Translation Elements in Davis’English Translation of Tao Yuanming’s Works from the Perspective of Cultural Context”(“文化语境视域下戴维斯英译《陶渊明作品集》的生态翻译元素动态对等研究”,YCX21A004)“National Social Science Foundation of China western Project in2018”(“2018年国家社科基金西部项目”)entitled“A study of Chinese Ci fu in the English-speaking world”(“英语世界的中国辞赋研究”,18XZW017).
文摘This paper mainly studies the basic types of annotation and the analysis of its effective functional usage,so as to pay more attention to annotation in the translation of poetry and Fu.The annotation of this study belongs to the category of paratext.Annotation is attributed to the paratext,undertakes its special function,enriches and perfects the paratext system.
文摘Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.