期刊文献+
共找到2,350篇文章
< 1 2 118 >
每页显示 20 50 100
Personality Trait Detection via Transfer Learning
1
作者 Bashar Alshouha Jesus Serrano-Guerrero +2 位作者 Francisco Chiclana Francisco P.Romero Jose A.Olivas 《Computers, Materials & Continua》 SCIE EI 2024年第2期1933-1956,共24页
Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-... Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-ditional machine learning techniques have been broadly employed for personality trait identification;nevertheless,the development of new technologies based on deep learning has led to new opportunities to improve their performance.This study focuses on the capabilities of pre-trained language models such as BERT,RoBERTa,ALBERT,ELECTRA,ERNIE,or XLNet,to deal with the task of personality recognition.These models are able to capture structural features from textual content and comprehend a multitude of language facets and complex features such as hierarchical relationships or long-term dependencies.This makes them suitable to classify multi-label personality traits from reviews while mitigating computational costs.The focus of this approach centers on developing an architecture based on different layers able to capture the semantic context and structural features from texts.Moreover,it is able to fine-tune the previous models using the MyPersonality dataset,which comprises 9,917 status updates contributed by 250 Facebook users.These status updates are categorized according to the well-known Big Five personality model,setting the stage for a comprehensive exploration of personality traits.To test the proposal,a set of experiments have been performed using different metrics such as the exact match ratio,hamming loss,zero-one-loss,precision,recall,F1-score,and weighted averages.The results reveal ERNIE is the top-performing model,achieving an exact match ratio of 72.32%,an accuracy rate of 87.17%,and 84.41%of F1-score.The findings demonstrate that the tested models substantially outperform other state-of-the-art studies,enhancing the accuracy by at least 3%and confirming them as powerful tools for personality recognition.These findings represent substantial advancements in personality recognition,making them appropriate for the development of user-centric applications. 展开更多
关键词 personality trait detection pre-trained language model big five model transfer learning
下载PDF
Learning Activity Sequencing in Personalized Education System
2
作者 ZHU Fan CAO Jiaheng 《Wuhan University Journal of Natural Sciences》 CAS 2008年第4期461-465,共5页
Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various establis... Personalized education provides an open learning environment which enriches the advanced technologies to establish a paradigm shift, active and dynamic teaching and learning patterns. E-learning has a various established approaches to the creation and sequencing of content-based, single learner, and self-paced learning objects. However, there is little understanding of how to create sequences of learning activities which involve groups of learners interacting within a structured set of collaborative environments. In this paper, we present an approach for learning activity sequencing based on ontology and activity graph in personalized education system. Modeling and management of learning activity and learner are depicted, and an algorithm is proposed to realize learning activity sequencing and learner ontology dynamically updating. 展开更多
关键词 learning activity sequencing ONTOLOGY personalized education
下载PDF
PERCEPOLIS: Pervasive Cyberinfrastructure for Personalized Learning and Instructional Support
3
作者 Ali R. Hurson Sahra Sedigh 《Intelligent Information Management》 2010年第10期586-596,共11页
This paper describes PERCEPOLIS, an educational platform that leverages technological advances, in particular in pervasive computing, to facilitate personalized learning in higher education, while supporting a network... This paper describes PERCEPOLIS, an educational platform that leverages technological advances, in particular in pervasive computing, to facilitate personalized learning in higher education, while supporting a networked curricular model. Fundamental to PERCEPOLIS is the modular approach to course development. Blended instruction, where students are responsible for perusing certain learning objects outside of class, used in conjunction with the cyberinfrastructure will allow the focus of face-to-face meetings to shift from lecture to active learning, interactive problem-solving, and reflective instructional tasks. The novelty of PERCEPOLIS lies in its ability to leverage pervasive and ubiquitous computing and communication through the use of intelligent software agents that use a student’s academic profile and interests, as well as supplemental information such as his or her learning style, to customize course content. Assessments that gauge the student’s mastery of concepts are used to allow self-paced progression through the course. Furthermore, the cyberinfrastructure facilitates the collection of data on student performance and learning at a resolution that far exceeds what is currently available. We believe that such an infrastructure will accelerate the acquisition of knowledge and skills critical to professional engineering practice, while facilitating the study of how this acquisition comes about, yielding insights that may lead to significant changes in pedagogy. 展开更多
关键词 learning Technology personalized learning CYBERINFRASTRUCTURE PERVASIVE Computing.
下载PDF
Personalized Learning Path Recommendations for Software Testing Courses Based on Knowledge Graphs
4
作者 Wei Zheng Ruonan Gu +2 位作者 Xiaoxue Wu Lipeng Gao Han Li 《计算机教育》 2023年第12期63-70,共8页
Software testing courses are characterized by strong practicality,comprehensiveness,and diversity.Due to the differences among students and the needs to design personalized solutions for their specific requirements,th... Software testing courses are characterized by strong practicality,comprehensiveness,and diversity.Due to the differences among students and the needs to design personalized solutions for their specific requirements,the design of the existing software testing courses fails to meet the demands for personalized learning.Knowledge graphs,with their rich semantics and good visualization effects,have a wide range of applications in the field of education.In response to the current problem of software testing courses which fails to meet the needs for personalized learning,this paper offers a learning path recommendation based on knowledge graphs to provide personalized learning paths for students. 展开更多
关键词 Knowledge graphs Software testing learning path personalized education
下载PDF
The Process of Personalized Learning Based on Flipped Classroom
5
作者 ZHANG Fan FENG Shu-xiong 《Sino-US English Teaching》 2017年第4期233-238,共6页
The new teaching mode of flipped classroom plays an important role in college English teaching reform in China. Personalized learning can be realized by flipped classroom. Firstly, selection and production of the teac... The new teaching mode of flipped classroom plays an important role in college English teaching reform in China. Personalized learning can be realized by flipped classroom. Firstly, selection and production of the teaching content before class is very important. Secondly, the organization of teaching activities in class should be well prepared. At last, the realization of combining personalized evaluation and integrity evaluation system is a vital issue for teachers to consider. 展开更多
关键词 personalized learning flipped classroom micro-video evaluation system
下载PDF
Extensive prediction of drug response in mutation-subtype-specific LUAD with machine learning approach
6
作者 KEGANG JIA YAWEI WANG +1 位作者 QI CAO YOUYU WANG 《Oncology Research》 SCIE 2024年第2期409-419,共11页
Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse... Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse cell populations within the tumor,each having unique genetic,epigenetic,and phenotypic profiles.Such variations lead to varied therapeutic responses,thereby contributing to tumor relapse and disease progression.Methods:The Genomics of Drug Sensitivity in Cancer(GDSC)database was used in this investigation to obtain the mRNA expression dataset,genomic mutation profile,and drug sensitivity information of NSCLS.Machine Learning(ML)methods,including Random Forest(RF),Artificial Neurol Network(ANN),and Support Vector Machine(SVM),were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods.The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods,and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype.Finally,the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets.Results:Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs.Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response(area under the curve[AUC]0.875)using CIT,GAS2L3,STAG3L3,ATP2B4-mut,and IL15RA-mut as molecular features.Furthermore,the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance(AUC 0.780)in Gefitinib with CCL23-mut.Conclusion:This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs. 展开更多
关键词 Lung adenocarcinoma Drug resistance Machine learning Molecular features personalized treatment
下载PDF
Achieving dynamic privacy measurement and protection based on reinforcement learning for mobile edge crowdsensing of IoT
7
作者 Renwan Bi Mingfeng Zhao +2 位作者 Zuobin Ying Youliang Tian Jinbo Xiong 《Digital Communications and Networks》 SCIE CSCD 2024年第2期380-388,共9页
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders... With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm. 展开更多
关键词 Mobile edge crowdsensing Dynamic privacy measurement personalized privacy threshold Privacy protection Reinforcement learning
下载PDF
From prediction to prevention:Machine learning revolutionizes hepatocellular carcinoma recurrence monitoring
8
作者 Mariana Michelle Ramírez-Mejía Nahum Méndez-Sánchez 《World Journal of Gastroenterology》 SCIE CAS 2024年第7期631-635,共5页
In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular ca... In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular carcinoma(HCC),which is characterized by high incidence and mortality rates,remains a major global health challenge primarily due to the critical issue of postoperative recurrence.Early recurrence,defined as recurrence that occurs within 2 years posttreatment,is linked to the hidden spread of the primary tumor and significantly impacts patient survival.Traditional predictive factors,including both patient-and treatment-related factors,have limited predictive ability with respect to HCC recurrence.The integration of machine learning algorithms is fueled by the exponential growth of computational power and has revolutionized HCC research.The study by Zhang et al demonstrated the use of a groundbreaking preoperative prediction model for early postoperative HCC recurrence.Challenges persist,including sample size constraints,issues with handling data,and the need for further validation and interpretability.This study emphasizes the need for collaborative efforts,multicenter studies and comparative analyses to validate and refine the model.Overcoming these challenges and exploring innovative approaches,such as multi-omics integration,will enhance personalized oncology care.This study marks a significant stride toward precise,efficient,and personalized oncology practices,thus offering hope for improved patient outcomes in the field of HCC treatment. 展开更多
关键词 Hepatocellular carcinoma Early recurrence Machine learning XGBoost model Predictive precision medicine Clinical utility personalized interventions
下载PDF
Enhancing personalized exercise recommendation with student and exercise portraits
9
作者 Wei-Wei Gao Hui-Fang Ma +2 位作者 Yan Zhao Jing Wang Quan-Hong Tian 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期91-109,共19页
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen... The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity. 展开更多
关键词 Educational data mining Exercise recommend Joint random walk Nearly uncoupled Markov chains Optimization personalized learning
下载PDF
Teaching the User By Learning From the User:Personalizing Movement Control in Physical Human-robot Interaction 被引量:1
10
作者 Ali Safavi Mehrdad H.Zadeh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期704-713,共10页
This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior ... This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction(p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration(LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user,is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method,and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces. 展开更多
关键词 Haptic guidance learning from demonstration(LfD) personalized physical human-robot interaction(p2HRI) user performance
下载PDF
Person Re-Identification with Model-Contrastive Federated Learning in Edge-Cloud Environment 被引量:1
11
作者 Baixuan Tang Xiaolong Xu +1 位作者 Fei Dai Song Wang 《Intelligent Automation & Soft Computing》 2023年第10期35-55,共21页
Person re-identification(ReID)aims to recognize the same person in multiple images from different camera views.Training person ReID models are time-consuming and resource-intensive;thus,cloud computing is an appropria... Person re-identification(ReID)aims to recognize the same person in multiple images from different camera views.Training person ReID models are time-consuming and resource-intensive;thus,cloud computing is an appropriate model training solution.However,the required massive personal data for training contain private information with a significant risk of data leakage in cloud environments,leading to significant communication overheads.This paper proposes a federated person ReID method with model-contrastive learning(MOON)in an edge-cloud environment,named FRM.Specifically,based on federated partial averaging,MOON warmup is added to correct the local training of individual edge servers and improve the model’s effectiveness by calculating and back-propagating a model-contrastive loss,which represents the similarity between local and global models.In addition,we propose a lightweight person ReID network,named multi-branch combined depth space network(MB-CDNet),to reduce the computing resource usage of the edge device when training and testing the person ReID model.MB-CDNet is a multi-branch version of combined depth space network(CDNet).We add a part branch and a global branch on the basis of CDNet and introduce an attention pyramid to improve the performance of the model.The experimental results on open-access person ReID datasets demonstrate that FRM achieves better performance than existing baseline. 展开更多
关键词 person re-identification federated learning contrastive learning
下载PDF
Artificial Intelligence-Enhanced Learning:A New Paradigm in the“Business Data Analysis and Application”Course
12
作者 Suhan Wu 《Journal of Contemporary Educational Research》 2024年第2期164-175,共12页
This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational me... This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational methodologies.It investigates how generative AI reshapes teaching and learning dynamics,enhancing the processing of complex data sets and nurturing critical thinking skills.The study highlights the role of AI in fostering dynamic,personalized,and adaptive learning experiences,addressing the evolving pedagogical needs of the business sector.Key challenges,including equitable access,academic integrity,and ethical considerations such as data privacy and algorithmic bias,are thoroughly examined.The research reveals that the integration of generative AI aligns with current professional demands,equipping students with cutting-edge AI tools,and tailoring learning to individual needs through real-time feedback mechanisms.The study concludes that the incorporation of generative AI into this course signifies a substantial evolution in educational approaches,offering profound implications for student learning and professional development. 展开更多
关键词 Generative AI Pedagogical innovation Adaptive personalized learning Curriculum enhancement
下载PDF
Design of a Student Recommendation Platform Based on Learning Behavior and Habit Training
13
作者 Xiaoyun Zhu 《Journal of Electronic Research and Application》 2024年第6期112-117,共6页
This study innovatively built an intelligent analysis platform for learning behavior,which deeply integrated the cutting-edge technology of big data and Artificial Intelligence(AI),\mined and analyzed students’learni... This study innovatively built an intelligent analysis platform for learning behavior,which deeply integrated the cutting-edge technology of big data and Artificial Intelligence(AI),\mined and analyzed students’learning data,and realized the personalized customization of learning resources and the accurate matching of intelligent learning partners.With the help of advanced algorithms and multi-dimensional data fusion strategies,the platform not only promotes positive interaction and collaboration in the learning environment but also provides teachers with comprehensive and in-depth students’learning portraits,which provides solid support for the implementation of precision education and the personalized adjustment of teaching strategies.In this study,a recommender system based on user similarity evaluation and a collaborative filtering mechanism is carefully designed,and its technical architecture and implementation process are described in detail. 展开更多
关键词 Big data analysis Collaborative filtering learning behavior analysis personalized recommendation Intelligent matching
下载PDF
Personalizing a Service Robot by Learning Human Habits from Behavioral Footprints
14
作者 Kun Li Max Q.-H.Meng 《Engineering》 SCIE EI 2015年第1期79-84,共6页
For a domestic personal robot, personalized services are as important as predesigned tasks, because the robot needs to adjust the home state based on the operator's habits. An operator's habits are composed of... For a domestic personal robot, personalized services are as important as predesigned tasks, because the robot needs to adjust the home state based on the operator's habits. An operator's habits are composed of cues, behaviors, and rewards. This article introduces behavioral footprints to describe the operator's behaviors in a house, and applies the inverse reinforcement learning technique to extract the operator's habits, represented by a reward function. We implemented the proposed approach with a mobile robot on indoor temperature adjustment, and compared this approach with a baseline method that recorded all the cues and behaviors of the operator. The result shows that the proposed approach allows the robot to reveal the operator's habits accurately and adjust the environment state accordingly. 展开更多
关键词 personalized robot habit learning behavioralfootprints
下载PDF
Personality Assessment Based on Natural Stream of Thoughts Empowered with Machine Learning
15
作者 Mohammed Salahat Liaqat Ali +1 位作者 Taher M.Ghazal Haitham M.Alzoubi 《Computers, Materials & Continua》 SCIE EI 2023年第7期1-17,共17页
Knowing each other is obligatory in a multi-agent collaborative environment.Collaborators may develop the desired know-how of each other in various aspects such as habits,job roles,status,and behaviors.Among different... Knowing each other is obligatory in a multi-agent collaborative environment.Collaborators may develop the desired know-how of each other in various aspects such as habits,job roles,status,and behaviors.Among different distinguishing characteristics related to a person,personality traits are an effective predictive tool for an individual’s behavioral pattern.It has been observed that when people are asked to share their details through questionnaires,they intentionally or unintentionally become biased.They knowingly or unknowingly provide enough information in much-unbiased comportment in open writing about themselves.Such writings can effectively assess an individual’s personality traits that may yield enormous possibilities for applications such as forensic departments,job interviews,mental health diagnoses,etc.Stream of consciousness,collected by James Pennbaker and Laura King,is one such way of writing,referring to a narrative technique where the emotions and thoughts of the writer are presented in a way that brings the reader to the fluid through the mental states of the narrator.More-over,computationally,various attempts have been made in an individual’s personality traits assessment through deep learning algorithms;however,the effectiveness and reliability of results vary with varying word embedding techniques.This article proposes an empirical approach to assessing personality by applying convolutional networks to text documents.Bidirectional Encoder Representations from Transformers(BERT)word embedding technique is used for word vector generation to enhance the contextual meanings. 展开更多
关键词 personality traits convolutional neural network deep learning word embedding
下载PDF
Personal Tacit Knowledge and Global Learning Professional Competencies—Multi-Dimensional Relationships
16
作者 Rosalind R. King 《Journal of Computer and Communications》 2017年第13期21-30,共10页
Global learning professional competencies (GLPCs) are essential for college students to be able to address the impact of globalization in the 21st century. Organizations and society-at-large look to higher education t... Global learning professional competencies (GLPCs) are essential for college students to be able to address the impact of globalization in the 21st century. Organizations and society-at-large look to higher education to prepare college students with GLPCs. In addition, there is a body of literature that suggest personal tacit knowledge enhance GLPCs. However, researchers have done little from an empirical perspective to determine the relationship between the use of P-T K and enhancement of GLPCs, hence the purpose of this study. The statistical results revealed significant correlations, p st century knowledge society through use of P-T K. 展开更多
关键词 personAL Tacit KNOWLEDGE (P-T K) GLOBAL learning PROFESSIONAL Competencies (GLPCs) MULTI-DIMENSIONAL RELATIONSHIPS
下载PDF
Multi-Target Tracking of Person Based on Deep Learning
17
作者 Xujun Li Guodong Fang +1 位作者 Liming Rao Tengze Zhang 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2671-2688,共18页
To improve the tracking accuracy of persons in the surveillance video,we proposed an algorithm for multi-target tracking persons based on deep learning.In this paper,we used You Only Look Once v5(YOLOv5)to obtain pers... To improve the tracking accuracy of persons in the surveillance video,we proposed an algorithm for multi-target tracking persons based on deep learning.In this paper,we used You Only Look Once v5(YOLOv5)to obtain person targets of each frame in the video and used Simple Online and Realtime Tracking with a Deep Association Metric(DeepSORT)to do cascade matching and Intersection Over Union(IOU)matching of person targets between different frames.To solve the IDSwitch problem caused by the low feature extraction ability of the Re-Identification(ReID)network in the process of cascade matching,we introduced Spatial Relation-aware Global Attention(RGA-S)and Channel Relation-aware Global Attention(RGA-C)attention mechanisms into the network structure.The pre-training weights are loaded for Transfer Learning training on the dataset CUHK03.To enhance the discrimination performance of the network,we proposed a new loss function design method,which introduces the Hard-Negative-Mining way into the benchmark triplet loss.To improve the classification accuracy of the network,we introduced a Label-Smoothing regularization method to the cross-entropy loss.To facilitate the model’s convergence stability and convergence speed at the early training stage and to prevent the model from oscillating around the global optimum due to excessive learning rate at the later stage of training,this paper proposed a learning rate regulation method combining Linear-Warmup and exponential decay.The experimental results on CUHK03 show that the mean Average Precision(mAP)of the improved ReID network is 76.5%.The Top 1 is 42.5%,the Top 5 is 65.4%,and the Top 10 is 74.3%in Cumulative Matching Characteristics(CMC);Compared with the original algorithm,the tracking accuracy of the optimized DeepSORT tracking algorithm is improved by 2.5%,the tracking precision is improved by 3.8%.The number of identity switching is reduced by 25%.The algorithm effectively alleviates the IDSwitch problem,improves the tracking accuracy of persons,and has a high practical value. 展开更多
关键词 YOLOv5 DeepSORT deep learning attention mechanism person re-identification multi-target tracking
下载PDF
Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons
18
作者 Nabil Almalki Mrim M.Alnfiai +3 位作者 Fahd N.Al-Wesabi Mesfer Alduhayyem Anwer Mustafa Hilal Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期6719-6736,共18页
Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services... Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services through different applications.It is an extreme challenge to monitor disabled people from remote locations.It is because day-to-day events like falls heavily result in accidents.For a person with disabilities,a fall event is an important cause of mortality and post-traumatic complications.Therefore,detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival rate.The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-DrivenAutomated Fall Detection(WOADTL-AFD)technique to improve the Quality of Life for persons with disabilities.The primary aim of the presented WOADTL-AFD technique is to identify and classify the fall events to help disabled individuals.To attain this,the proposed WOADTL-AFDmodel initially uses amodified SqueezeNet feature extractor which proficiently extracts the feature vectors.In addition,the WOADTLAFD technique classifies the fall events using an extreme Gradient Boosting(XGBoost)classifier.In the presented WOADTL-AFD technique,the WOA approach is used to fine-tune the hyperparameters involved in the modified SqueezeNet model.The proposedWOADTL-AFD technique was experimentally validated using the benchmark datasets,and the results confirmed the superior performance of the proposedWOADTL-AFD method compared to other recent approaches. 展开更多
关键词 Quality of living disabled persons intelligent models deep learning fall detection whale optimization algorithm
下载PDF
Research on Personal Credit Risk Assessment Model Based on Instance-Based Transfer Learning
19
作者 Maoguang Wang Hang Yang 《International Journal of Intelligence Science》 2021年第1期44-55,共12页
Personal credit risk assessment is an important part of the development of financial enterprises. Big data credit investigation is an inevitable trend of personal credit risk assessment, but some data are missing and ... Personal credit risk assessment is an important part of the development of financial enterprises. Big data credit investigation is an inevitable trend of personal credit risk assessment, but some data are missing and the amount of data is small, so it is difficult to train. At the same time, for different financial platforms, we need to use different models to train according to the characteristics of the current samples, which is time-consuming. <span style="font-family:Verdana;">In view of</span><span style="font-family:Verdana;"> these two problems, this paper uses the idea of transfer learning to build a transferable personal credit risk model based on Instance-based Transfer Learning (Instance-based TL). The model balances the weight of the samples in the source domain, and migrates the existing large dataset samples to the target domain of small samples, and finds out the commonness between them. At the same time, we have done a lot of experiments on the selection of base learners, including traditional machine learning algorithms and ensemble learning algorithms, such as decision tree, logistic regression, </span><span style="font-family:Verdana;">xgboost</span> <span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> so on. The datasets are from P2P platform and bank, the results show that the AUC value of Instance-based TL is 24% higher than that of the traditional machine learning model, which fully proves that the model in this paper has good application value. The model’s evaluation uses AUC, prediction, recall, F1. These criteria prove that this model has good application value from many aspects. At present, we are trying to apply this model to more fields to improve the robustness and applicability of the model;on the other hand, we are trying to do more in-depth research on domain adaptation to enrich the model.</span> 展开更多
关键词 personal Credit Risk Big Data Credit Investigation Instance-Based Transfer learning
下载PDF
Review of Image-Based Person Re-Identification in Deep Learning
20
作者 Junchuan Yang 《Journal of New Media》 2020年第4期137-148,共12页
Person Re-identification(re-ID)is a hot research topic in the field of computer vision now,which can be regarded as a sub-problem of image retrieval.The goal of person re-ID is to give a monitoring pedestrian image an... Person Re-identification(re-ID)is a hot research topic in the field of computer vision now,which can be regarded as a sub-problem of image retrieval.The goal of person re-ID is to give a monitoring pedestrian image and retrieve other images of the pedestrian across the device.At present,person re-ID is mainly divided into two categories.One is the traditional methods,which relies heavily on manual features.The other is to use deep learning technology to solve.Because traditional methods mainly rely on manual feature,they cannot adapt well to a complex environment with a large amount of data.In recent years,with the development of deep learning technology,a large number of person re-ID methods based on deep learning have been proposed,which greatly improves the accuracy of person re-ID. 展开更多
关键词 person re-identification deep learning video surveillance system
下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部