Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivit...Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.展开更多
Neural tube defects(NTDs)are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure.Although folate supplementation has been shown to mitigate the incidence of NTDs,some cases,often...Neural tube defects(NTDs)are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure.Although folate supplementation has been shown to mitigate the incidence of NTDs,some cases,often attributable to genetic factors,remain unpreventable.The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation;at present,however,the underlying mechanism remains unclear.Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate.To determine the role of SHROOM3 in early developmental morphogenesis,we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase.Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei.These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins,namely fibrous actin(F-actin),myosin II,and phospho-myosin light chain(PMLC),to the apical side of the neuroepithelial cells.Notably,these defects were not rescued by folate supplementation.RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis.In summary,we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.展开更多
The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing mo...The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.展开更多
The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the sca...The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the scale range 1–100 nm.A large-area ^(3)He tube array detector has been constructed and operates at the CSNS SANS instrument since August 2018.It consists of 120 linear position-sensitive detector tubes,each 1 m in length and 8 mm in diameter,and filled with ^(3)He gas at 20 bar to obtain a high detection efficiency.The ^(3)He tubes were divided into ten modules,providing an overall area of 1000 mm×1020 mm with a high count rate capability.Because each tube is installed independently,the detector can be quickly repaired in situ by replacing damaged tubes.To reduce air scattering,the SANS detector must operate in a vacuum environment(0.1 mbar).An all-metal sealing technique was adopted to avoid high-voltage breakdown by ensuring a high-voltage connection and an electronic system working in an atmospheric environment.A position resolution of 7.8±0.1 mm(full width at maximum)is measured along the length of the tubes,with a high detection efficiency of 81±2% at 2A.Operating over the past four years,the detector appears to perform well and with a high stability,which supports the SANS instrument to finish approximately 200 user scientific programs.展开更多
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra...Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.展开更多
Three kinds of NiCr-Cr 3C 2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comparison with 102G, 20G boiler...Three kinds of NiCr-Cr 3C 2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comparison with 102G, 20G boiler tube steel, FeCrAl, NiCrTi, Ni50Cr and NiCrAlMoFe-Cr 3C 2 coatings, which are widely used at present for protection of boiler tubes. Meanwhile,the influence of sealer on the hot corrosion resistance of various coatings and the mechanisms of coating corrosion were explored.展开更多
Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of iden...Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of identifying puncture points,a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction.According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal,the proposed algorithm can provide an optimal route for a drainage tube for the hematoma,the precise position of the puncture point,and preoperative planning information,which have considerable instructional significance for clinicians.展开更多
The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained t...The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.展开更多
基金supported by the Natural Science Foundation of China(91963202 and 52072372)the Key Research Program of Frontier Sciences(CAS,Grant,QYZDJ-SSW-SLH046)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(YZJ ZX202018)
文摘Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.
基金supported by the National Natural Science Foundation of China (81930121,82125008 to Y.C.C.)National Key Research and Development Program of China (2018YFA0107902 to Y.C.C.and 2018YFA0801403 to Z.B.W.)+1 种基金Major Basic Research Project of Science and Technology of Yunnan (202001BC070001 to Y.C.C.)Natural Science Foundation of Yunnan Province (202102AA100053 to Y.C.C.)。
文摘Neural tube defects(NTDs)are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure.Although folate supplementation has been shown to mitigate the incidence of NTDs,some cases,often attributable to genetic factors,remain unpreventable.The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation;at present,however,the underlying mechanism remains unclear.Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate.To determine the role of SHROOM3 in early developmental morphogenesis,we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase.Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei.These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins,namely fibrous actin(F-actin),myosin II,and phospho-myosin light chain(PMLC),to the apical side of the neuroepithelial cells.Notably,these defects were not rescued by folate supplementation.RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis.In summary,we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.
文摘The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.
基金supported by the National Key R&D Program of China(No.2021YFA1600703)the National Natural Science Foundation of China(No.12175254)+2 种基金the Youth Innovation Promotion Association CASthe China Spallation Neutron Source Projectthe Innovative Projects of the IHEP(No.E15459U210).
文摘The small-angle neutron scattering(SANS)instrument,one of the first three instruments of the China Spallation Neutron Source(CSNS),is designed to probe the microscopic and mesoscopic structures of materials in the scale range 1–100 nm.A large-area ^(3)He tube array detector has been constructed and operates at the CSNS SANS instrument since August 2018.It consists of 120 linear position-sensitive detector tubes,each 1 m in length and 8 mm in diameter,and filled with ^(3)He gas at 20 bar to obtain a high detection efficiency.The ^(3)He tubes were divided into ten modules,providing an overall area of 1000 mm×1020 mm with a high count rate capability.Because each tube is installed independently,the detector can be quickly repaired in situ by replacing damaged tubes.To reduce air scattering,the SANS detector must operate in a vacuum environment(0.1 mbar).An all-metal sealing technique was adopted to avoid high-voltage breakdown by ensuring a high-voltage connection and an electronic system working in an atmospheric environment.A position resolution of 7.8±0.1 mm(full width at maximum)is measured along the length of the tubes,with a high detection efficiency of 81±2% at 2A.Operating over the past four years,the detector appears to perform well and with a high stability,which supports the SANS instrument to finish approximately 200 user scientific programs.
文摘Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.
文摘Three kinds of NiCr-Cr 3C 2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comparison with 102G, 20G boiler tube steel, FeCrAl, NiCrTi, Ni50Cr and NiCrAlMoFe-Cr 3C 2 coatings, which are widely used at present for protection of boiler tubes. Meanwhile,the influence of sealer on the hot corrosion resistance of various coatings and the mechanisms of coating corrosion were explored.
基金funded by the National Science Foundation of China,Nos.51674121 and 61702184the Returned Overseas Scholar Funding of Hebei Province,No.C2015005014the Hebei Key Laboratory of Science and Application,and Tangshan Innovation Team Project,No.18130209B.
文摘Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of identifying puncture points,a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction.According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal,the proposed algorithm can provide an optimal route for a drainage tube for the hematoma,the precise position of the puncture point,and preoperative planning information,which have considerable instructional significance for clinicians.
文摘The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.