Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeut...Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.展开更多
Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases)...Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases) mRNA in the rat uterus during estrouscycle. The relative activity was semiquanted by using densitometric analysis. The MMP-2(67 kDa) activity in every stage during estrpus cycle was detected by zymography. MMP-2activity was highest at proestrus; higher at estrus and metaestrus; lowest at diestrus. Throughin situ hybridization, MMP -2, -9, TIMP -1~ -3 mRNA mainly in hasal stroma cells of uterineendometrium were detected. The positive signals of MMP -2 and -9 mRNAs in hasal stromacells were shown stronger at proestrus, estrus and metaestrus while they showed the weakest atdiestrus. The expression of MMP -2 mRNA coincided with MMP -2 activity change. MMP-2and -9 mRNAs were also highly expressed in uterine circular muscle at estrus. Weak signals ofMMP -9 mRNA were detected in uterine luminal and glandular epithelial cells at estrus.TIMP -1 mRNA in hasal stroma cells was shown as the strongest expression at estrus andmetaestrus; stronger at proestrus and the weakest at diestrus. TIMP-2 mRNA in basal stromacells was stronger at estrus and diestrus; weaker at proestrus and metaestrus. TIMP -1 and -2mRNAs were also highly expressed in uterine luminal and glandular epithelial cells at estrus.TIMP -3 mRNA in hasal stroma cells revealed the strongest expression at estrus; stronger atdiestrus and metaestrus and showed the weakest at proestrus. The mRNA was also highlyexpressed in uterine circular muscle at estrus. In short, our present results provide evidencethat MMP -2, -9 and TIMP -1~ -3 were involved in rat uterine endometrium reconstructionduring estrous cycle.展开更多
Objective: To further refine the extent of deletion on chromosome 9p21-22 in nasopharyngeal carcinoma (NPC) and provide evidence for discovering new tumor suppressor gene. Methods: Loss of heterozygosity (LOH) on chro...Objective: To further refine the extent of deletion on chromosome 9p21-22 in nasopharyngeal carcinoma (NPC) and provide evidence for discovering new tumor suppressor gene. Methods: Loss of heterozygosity (LOH) on chromosome 9p21-22 was analyzed in 25 paired blood and tumor samples by using 11 high-density microsatellite polymorphic markers. Results: 17 of 25 cases (68.0%) showed LOH at one or more loci. Higher frequencies of LOH were found at four loci: D9S161 (35.0%), D9S1678 (31.5%), D9S263 (33.3%) and D9S1853 (33.3%), where 6 cases had a contiguous stretch of allelic loss. Conclusion: The minimal common region of deletion might be defined between D9S161 and D9S1853 (estimated about 2.7 cM in extent) at 9p21.1, suggesting that inactivation of one or more tumor suppressor genes located in this region may be an important step in NPC.展开更多
A chloroplast-localized tomato (Lycopersicon esculentum Mill.) ω-3 fatty acid desaturase gene (LeFADT) was isolated and characterized with regard to its sequence, response to various temperatures, and function in...A chloroplast-localized tomato (Lycopersicon esculentum Mill.) ω-3 fatty acid desaturase gene (LeFADT) was isolated and characterized with regard to its sequence, response to various temperatures, and function in antisense transgenic tomato plants. The deduced amino acid sequence had four histidine-rich regions, of which three regions were highly conserved throughout the whole ω-3 fatty acid desaturasegene family. Southern blotting analysis showed that LeFAD7was encoded by a single copy gene and had two homologous genes in the tomato genome. Northern blot showed that LeFAD7 was expressed in all organs and was especially abundant in leaf tissue. Meanwhile, expression of LeFAD7 was induced by chilling stress (4 ℃), but was inhibited by high temperature (45 ℃), in leaves. Transgenic tomato plants were produced by integration of the antisense LeFAD7DNA under the control of a CaMV35S promoter into the genome. Antisense transgenic plants with lower 18 : 3 content could maintain a higher maximal photochemical efficiency (Fv/Fm) and O2 evolution rate than wild-type plants. These results suggested that silence of the LeFAD7 gene alleviated high-temperature stress. There was also a correlation between the low content of 18 : 3 resulting from silence of the LeFAD7 gene and tolerance to high-temperature stress.展开更多
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
文摘Background:This study explores the relationship between endoplasmic reticulum(ER)stress and diabetes,particularly focusing on the impact of physical exercise on ER stress mechanisms and identifying potential therapeutic drugs and targets for diabetes-related sepsis.The research also incorporates traditional physical therapy perspectives,emphasizing the genomic insights gained from exercise therapy in disease management and prevention.Methods:Gene analysis was conducted on the GSE168796 and GSE94717 datasets to identify ER stress-related genes.Gene interactions and immune cell correlations were mapped using GeneCard and STRING databases.A screening of 2,456 compounds from the TCMSP database was performed to identify potential therapeutic agents,with a focus on their docking potential.Techniques such as luciferase reporter gene assay and RNA interference were used to examine the interactions between microRNA-149-5p and MMP9.Results:The study identified 2,006 differentially expressed genes and 616 miRNAs.Key genes like MMP9,TNF-α,and IL1B were linked to an immunosuppressive state.Licorice glycoside E demonstrated high affinity for MMP9,suggesting its potential effectiveness in treating diabetes.The constructed miRNA network highlighted the regulatory roles of MMP9,IL1B,IFNG,and TNF-α.Experimental evidence confirmed the binding of microRNA-149-5p to MMP9,impacting apoptosis in diabetic cells.Conclusion:The findings highlight the regulatory role of microRNA-149-5p in managing MMP9,a crucial gene in diabetes pathophysiology.Licorice glycoside E emerges as a promising treatment option for diabetes,especially targeting MMP9 affected by ER stress.The study also underscores the significance of physical exercise in modulating ER stress pathways in diabetes management,bridging traditional physical therapy and modern scientific understanding.Our study has limitations.It focuses on the microRNA-149-5p-MMP9 network in sepsis,using cell-based methods without animal or clinical trials.Despite strong in vitro findings,in vivo studies are needed to confirm licorice glycoside E’s therapeutic potential and understand the microRNA-149-5p-MMP9 dynamics in real conditions.
文摘Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases) mRNA in the rat uterus during estrouscycle. The relative activity was semiquanted by using densitometric analysis. The MMP-2(67 kDa) activity in every stage during estrpus cycle was detected by zymography. MMP-2activity was highest at proestrus; higher at estrus and metaestrus; lowest at diestrus. Throughin situ hybridization, MMP -2, -9, TIMP -1~ -3 mRNA mainly in hasal stroma cells of uterineendometrium were detected. The positive signals of MMP -2 and -9 mRNAs in hasal stromacells were shown stronger at proestrus, estrus and metaestrus while they showed the weakest atdiestrus. The expression of MMP -2 mRNA coincided with MMP -2 activity change. MMP-2and -9 mRNAs were also highly expressed in uterine circular muscle at estrus. Weak signals ofMMP -9 mRNA were detected in uterine luminal and glandular epithelial cells at estrus.TIMP -1 mRNA in hasal stroma cells was shown as the strongest expression at estrus andmetaestrus; stronger at proestrus and the weakest at diestrus. TIMP-2 mRNA in basal stromacells was stronger at estrus and diestrus; weaker at proestrus and metaestrus. TIMP -1 and -2mRNAs were also highly expressed in uterine luminal and glandular epithelial cells at estrus.TIMP -3 mRNA in hasal stroma cells revealed the strongest expression at estrus; stronger atdiestrus and metaestrus and showed the weakest at proestrus. The mRNA was also highlyexpressed in uterine circular muscle at estrus. In short, our present results provide evidencethat MMP -2, -9 and TIMP -1~ -3 were involved in rat uterine endometrium reconstructionduring estrous cycle.
基金a grant from the National "863" Project of China (No. 102-10-01-05).
文摘Objective: To further refine the extent of deletion on chromosome 9p21-22 in nasopharyngeal carcinoma (NPC) and provide evidence for discovering new tumor suppressor gene. Methods: Loss of heterozygosity (LOH) on chromosome 9p21-22 was analyzed in 25 paired blood and tumor samples by using 11 high-density microsatellite polymorphic markers. Results: 17 of 25 cases (68.0%) showed LOH at one or more loci. Higher frequencies of LOH were found at four loci: D9S161 (35.0%), D9S1678 (31.5%), D9S263 (33.3%) and D9S1853 (33.3%), where 6 cases had a contiguous stretch of allelic loss. Conclusion: The minimal common region of deletion might be defined between D9S161 and D9S1853 (estimated about 2.7 cM in extent) at 9p21.1, suggesting that inactivation of one or more tumor suppressor genes located in this region may be an important step in NPC.
基金Supported by the State Key Basic Research and Development Plan of China (G1998010100) and the National Natural Science Foundation of China (30471053).
文摘A chloroplast-localized tomato (Lycopersicon esculentum Mill.) ω-3 fatty acid desaturase gene (LeFADT) was isolated and characterized with regard to its sequence, response to various temperatures, and function in antisense transgenic tomato plants. The deduced amino acid sequence had four histidine-rich regions, of which three regions were highly conserved throughout the whole ω-3 fatty acid desaturasegene family. Southern blotting analysis showed that LeFAD7was encoded by a single copy gene and had two homologous genes in the tomato genome. Northern blot showed that LeFAD7 was expressed in all organs and was especially abundant in leaf tissue. Meanwhile, expression of LeFAD7 was induced by chilling stress (4 ℃), but was inhibited by high temperature (45 ℃), in leaves. Transgenic tomato plants were produced by integration of the antisense LeFAD7DNA under the control of a CaMV35S promoter into the genome. Antisense transgenic plants with lower 18 : 3 content could maintain a higher maximal photochemical efficiency (Fv/Fm) and O2 evolution rate than wild-type plants. These results suggested that silence of the LeFAD7 gene alleviated high-temperature stress. There was also a correlation between the low content of 18 : 3 resulting from silence of the LeFAD7 gene and tolerance to high-temperature stress.