光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了...光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。展开更多
光伏发电系统在局部阴影条件下,传统的最大功率点跟踪算法(maximum power point tracking,MPPT)容易陷入局部寻优,无法跟踪到全局最大功率点.针对这一问题,本文提出了一种基于自适应学习因子粒子群算法的最大功率跟踪方法.该方法在普通...光伏发电系统在局部阴影条件下,传统的最大功率点跟踪算法(maximum power point tracking,MPPT)容易陷入局部寻优,无法跟踪到全局最大功率点.针对这一问题,本文提出了一种基于自适应学习因子粒子群算法的最大功率跟踪方法.该方法在普通粒子群算法的基础上不断改变学习因子和权重系数,以提高算法收敛的速度和精度.将其应用于局部阴影条件下的光伏发电系统最大功率点跟踪中,并在RT-LAB实时仿真平台中以两个接受不同光照强度的光伏阵列为例进行实时仿真验证.仿真结果表明,两峰情况下本文所提出的自适应学习因子粒子群算法能够在0.298 s左右跟踪到全局最大功率点,普通粒子群算法需要约0.615 s,而扰动观察法陷入了局部最大功率点,本文所提算法能够有效提高系统的收敛速度和精度并且适用于多峰情况.最后设置仿真算例验证本算法适用于光照突变的情况.展开更多
文摘光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。
文摘光伏发电系统在局部阴影条件下,传统的最大功率点跟踪算法(maximum power point tracking,MPPT)容易陷入局部寻优,无法跟踪到全局最大功率点.针对这一问题,本文提出了一种基于自适应学习因子粒子群算法的最大功率跟踪方法.该方法在普通粒子群算法的基础上不断改变学习因子和权重系数,以提高算法收敛的速度和精度.将其应用于局部阴影条件下的光伏发电系统最大功率点跟踪中,并在RT-LAB实时仿真平台中以两个接受不同光照强度的光伏阵列为例进行实时仿真验证.仿真结果表明,两峰情况下本文所提出的自适应学习因子粒子群算法能够在0.298 s左右跟踪到全局最大功率点,普通粒子群算法需要约0.615 s,而扰动观察法陷入了局部最大功率点,本文所提算法能够有效提高系统的收敛速度和精度并且适用于多峰情况.最后设置仿真算例验证本算法适用于光照突变的情况.