期刊文献+
共找到493篇文章
< 1 2 25 >
每页显示 20 50 100
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:32
1
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
2
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 快速区域卷积神经网络 生成对抗网络 超分辨重建
下载PDF
基于快速区域卷积神经网络的电网通信网入侵威胁预先识别方法 被引量:3
3
作者 吴谦 陈嘉 +1 位作者 周瑾瑜 周德永 《电气自动化》 2022年第6期98-101,105,共5页
为改善传统电网通信网入侵威胁预测机制存在的若干缺陷,提出了一种基于快速区域卷积神经网络的电网通信网入侵威胁预先识别方法。首先构建快速区域卷积神经网络机制实现电网通信网入侵威胁精准预测;然后构建时间正序下的电网通信网入侵... 为改善传统电网通信网入侵威胁预测机制存在的若干缺陷,提出了一种基于快速区域卷积神经网络的电网通信网入侵威胁预先识别方法。首先构建快速区域卷积神经网络机制实现电网通信网入侵威胁精准预测;然后构建时间正序下的电网通信网入侵威胁核心要素样本精准预测机制;最后借助电网通信网入侵威胁预测函数输出最优预测结果。对模型进行了工程应用实践验证,满足电网通信网入侵威胁预测智慧化改造需求,大幅度优化了电网通信网入侵威胁预测智慧可控感知机制。 展开更多
关键词 电网通信网 入侵威胁 预先识别方法 快速区域卷积神经网络 工程应用实践
下载PDF
改进卷积神经网络的医学图像感兴趣区域识别
4
作者 肖衡 潘玉霞 《计算机仿真》 2024年第3期177-181,共5页
图像中的噪声会提高图像特征信息提取难度,影响图像识别时的细节保留效果,为此提出改进卷积神经网络的医学图像感兴趣区域识别方法。分析医学图像主要噪声来源,构建噪声模型,利用非局部均值滤波算法计算图像全部像素的加权平均值,完成... 图像中的噪声会提高图像特征信息提取难度,影响图像识别时的细节保留效果,为此提出改进卷积神经网络的医学图像感兴趣区域识别方法。分析医学图像主要噪声来源,构建噪声模型,利用非局部均值滤波算法计算图像全部像素的加权平均值,完成图像去噪处理;通过图像求反、对比度增加和灰度调节等操作增强图像细节信息;利用局部区域特征提取方法获取图像基础纹理特征,包括灰度、平滑度与熵值等;建立具有卷积层、池化层、全连接层的卷积神经网络模型,引入区域建议网络对其改进,通过该网络确定识别的候选区域,将图像特征作为网络输入,经过不断学习迭代,输出最终感兴趣区域。实验结果表明,所提方法在提高图像质量的基础上,识别出的感兴趣区域较为完整,包含的有用信息更多。 展开更多
关键词 卷积神经网络 区域建议网络 医学图像 感兴趣区域识别 去噪处理
下载PDF
基于快速区域卷积神经网络胰腺癌增强CT自动识别系统的建立及临床测试 被引量:8
5
作者 杨树建 卢云 +8 位作者 郑学风 张月娟 信芳杰 孙品 李营 刘世松 李帅 郭雨婷 刘尚龙 《中华外科杂志》 CAS CSCD 北大核心 2020年第7期520-524,共5页
目的验证基于快速区域卷积神经网络(Faster R-CNN)胰腺癌增强CT自动识别系统,并探讨其临床应用价值。方法回顾性收集青岛大学附属医院2013年1月至2016年5月收治的315例胰腺癌患者的4024张增强CT影像序列,将2614张影像序列作为训练组输入... 目的验证基于快速区域卷积神经网络(Faster R-CNN)胰腺癌增强CT自动识别系统,并探讨其临床应用价值。方法回顾性收集青岛大学附属医院2013年1月至2016年5月收治的315例胰腺癌患者的4024张增强CT影像序列,将2614张影像序列作为训练组输入Faster R-CNN系统,建立影像自动识别模型,通过读取135例胰腺癌的1410张增强CT影像进行验证。为了进一步测试其临床应用效果,读取150例胰腺占位患者的3750张增强CT影像并对其诊断结果进行随访。记录结节类别的精准率和召回率,绘制精确回归曲线,分析Faster R-CNN诊断的准确性、灵敏度、特异度,生成受试者工作特征(ROC)曲线,并计算曲线下面积。结果基于135例胰腺癌增强CT影像,得到Faster R-CNN的人工智能辅助诊断的ROC曲线的曲线下面积为0.927,准确性、特异度、灵敏度分别为0.902、0.913、0.801。经过150例胰腺占位患者资料的验证,判定阳性893张,阴性2857张,Faster R-CNN诊断为胰腺癌患者98例,对其诊断结果进行随访,其中53例经外科手术后病理证实为胰腺导管癌、21例为胰腺囊腺癌、12例为胰腺囊腺瘤、5例为胰腺囊肿,7例患者未手术治疗。在术后5~17个月内6例死于腹腔肿瘤浸润、肝转移或肺转移。在Faster R-CNN诊断为阴性的52例患者中,有9例经外科术后证实为胰腺导管癌。结论Faster R-CNN系统能够帮助影像科医师对胰腺癌进行诊断,具有一定的临床应用价值。 展开更多
关键词 胰腺肿瘤 诊断 基于快速区域卷积神经网络 临床应用
原文传递
基于并联卷积神经网络的无人机遥感影像建筑区域测量 被引量:1
6
作者 黄艳晖 向环丽 余荣春 《计算机测量与控制》 2024年第3期44-49,共6页
无人机遥感影像覆盖范围广,难以区分建筑区域与背景区域,导致无人机遥感影像建筑区域测量结果可靠性下降;以解决这一问题作为研究目标,提出了一种基于并联卷积神经网络的无人机遥感影像建筑区域测量方法;获取无人机遥感影像,通过静态输... 无人机遥感影像覆盖范围广,难以区分建筑区域与背景区域,导致无人机遥感影像建筑区域测量结果可靠性下降;以解决这一问题作为研究目标,提出了一种基于并联卷积神经网络的无人机遥感影像建筑区域测量方法;获取无人机遥感影像,通过静态输出、图像融合、去雾等环节完成遥感影像预处理;构建并联卷积神经网络,通过网络训练传播提取预处理后无人机遥感影像建筑区域边缘特征,经过特征匹配实现无人机遥感影像中建筑区域识别,结合面积计算结果得到建筑区域的测量结果;经过精度性能测试实验得出结论,在有雾和无雾环境下所提方法与传统区域测量方法相比的建筑区域测量误差分别降低了0.505 km^(2)和0.305 km^(2),说明该方法的测量结果可靠性更高,可以广泛应用在无人机遥感影像建筑区域测量领域。 展开更多
关键词 并联卷积神经网络 无人机测量 遥感影像 建筑区域测量
下载PDF
基于U-net卷积神经网络的电磁场快速计算方法 被引量:2
7
作者 张宇娇 赵志涛 +2 位作者 徐斌 孙宏达 黄雄峰 《电工技术学报》 EI CSCD 北大核心 2024年第9期2730-2742,共13页
有限元法(FEM)是物理场分析常用的方法,但庞大的求解自由度导致FEM计算成本很大。针对FEM计算时间长的问题,构建一种基于U-net卷积神经网络的物理场快速计算方法,将样本数据通过栅格化或点云化处理后作为神经网络的输入和标签数据,通过... 有限元法(FEM)是物理场分析常用的方法,但庞大的求解自由度导致FEM计算成本很大。针对FEM计算时间长的问题,构建一种基于U-net卷积神经网络的物理场快速计算方法,将样本数据通过栅格化或点云化处理后作为神经网络的输入和标签数据,通过网络训练实现物理场的快速计算并研究该方法在电磁场计算中的应用。结果表明,该方法能准确有效地预测电势、电场强度、磁感应强度等物理量的分布,且预测时间较FEM仿真计算时间大幅缩短。同时,通过合理选择数据集大小,即使在小数据集下也能有较高的预测精度。 展开更多
关键词 电磁场 卷积神经网络 快速计算 有限元法
下载PDF
基于双流快速区域卷积神经网络改进的人体动作识别算法 被引量:4
8
作者 郭如意 金杰 +2 位作者 刘高华 刘凯燕 姜诗祺 《激光与光电子学进展》 CSCD 北大核心 2020年第24期338-342,共5页
深度神经网络在静态图像领域已取得突破性进展,并逐步扩展到视频识别领域。人体动作识别是视频识别领域的研究热点和难点,因此,提出了一种基于双流快速区域卷积神经网络(Faster RCNN)改进的人体动作识别算法。首先,用RGB(Red,Green,Blue... 深度神经网络在静态图像领域已取得突破性进展,并逐步扩展到视频识别领域。人体动作识别是视频识别领域的研究热点和难点,因此,提出了一种基于双流快速区域卷积神经网络(Faster RCNN)改进的人体动作识别算法。首先,用RGB(Red,Green,Blue)图像和光流数据作为网络的输入,分别训练Faster RCNN;然后,将训练好后的网络模型进行融合,并引入改进的压缩和激励模块对特征通道进行处理,以突出重要特征;最后,用完全的交并比损失函数作为边框回归损失函数,以优化某些预测框与真实框不能相交等问题。实验结果表明,相比传统的Faster RCNN,本算法在动作识别数据集UCF101上的准确率得到了一定的提高。 展开更多
关键词 机器视觉 双流快速区域卷积神经网络 人体动作识别 压缩与激励 交并比损失函数
原文传递
基于快速区域卷积神经网络对于胸部数字X线摄影图像异物的自动检测 被引量:1
9
作者 张庆雷 陈飞 +9 位作者 李茗 戴真煜 姚立正 张鑫 蔡金凤 方宇 郭晓鹏 辛小燕 青钊 张冰 《临床放射学杂志》 北大核心 2022年第2期367-371,共5页
目的探讨快速区域卷积神经网络(Faster RCNN)在胸部数字X线摄影(DR)图像异物位置和类型自动检测中的应用价值。方法对960张胸部DR图像进行Faster RCNN训练、验证及测试,按3∶1∶1的比例随机划分数据集为训练集(576张)、验证集(192张)和... 目的探讨快速区域卷积神经网络(Faster RCNN)在胸部数字X线摄影(DR)图像异物位置和类型自动检测中的应用价值。方法对960张胸部DR图像进行Faster RCNN训练、验证及测试,按3∶1∶1的比例随机划分数据集为训练集(576张)、验证集(192张)和测试集(192张)。使用开源分割工具ImageJ对左、右肺野及异物(共13类)进行标注,其中左、右肺野采用区域标记,异物采用包围框标记。肺野分割精确程度采用肺野预测模型度量函数IoU值表示。异物位置标注结果分为三类:图像无异物,图像有肺野内异物,图像有肺野外异物。将检测结果用三分类混淆矩阵表示,并计算三类图像的召回率、精确率及最终分类的准确率。并输出对各类异物检测的平均精确率(AP)和总平均精确率(mAP)。结果训练集和验证集共768张胸部DR中的645张含有异物,共4655个。测试集左肺分割平均IoU值为0.959,右肺分割平均IoU值为0.958。单例测试耗时5 s。图像无异物,图像有肺野内异物和图像有肺野外异物三类图像的召回率分别为94%、75%和82%,精确率分别为88%、98%和70%;总准确率为86%。对各类异物检测的AP范围为66%~100%,mAP为81%。结论 Faster RCNN可满足影像质量控制工作中自动检测DR图像异物的要求。 展开更多
关键词 区域卷积神经网络 胸部数字X线摄影 异物 质量控制
原文传递
基于卷积神经网络快速区域标定的表面缺陷检测 被引量:24
10
作者 李宜汀 谢庆生 +2 位作者 黄海松 姚立国 魏琴 《计算机集成制造系统》 EI CSCD 北大核心 2019年第8期1897-1907,共11页
为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精... 为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精度。所提算法结合数据扩充方法增加了图像数量,通过划分K折交叉验证数据集改善了算法的鲁棒性;同时,将稀疏滤波思想融入卷积神经网络,提取双重深度特征作为FasterR-CNN的输入,提升了FasterR-CNN位置检测和识别的精度。通过油辣椒灌装生产线的封盖面典型缺陷检测验证了所提方法的可行性。 展开更多
关键词 表面缺陷检测 卷积神经网络快速区域标定 位置检测 稀疏滤波 生产过程监控
下载PDF
基于区域的快速卷积神经网络的焊缝TOFD检测缺陷识别 被引量:5
11
作者 黄焕东 胡利晨 +3 位作者 李斌彬 沈成业 王红源 陈振华 《无损检测》 2019年第7期12-18,共7页
受扫查图像效果和检测人员能力与主观因素的影响,检测人员在使用超声衍射时差法(TOFD)的D扫描图像判断焊缝缺陷类型时,存在可靠性低、争议大、速度慢的问题。为了提高缺陷类型识别的准确性及效率,分析了焊缝缺陷的TOFD-D扫描图像特征,... 受扫查图像效果和检测人员能力与主观因素的影响,检测人员在使用超声衍射时差法(TOFD)的D扫描图像判断焊缝缺陷类型时,存在可靠性低、争议大、速度慢的问题。为了提高缺陷类型识别的准确性及效率,分析了焊缝缺陷的TOFD-D扫描图像特征,构建了一种基于区域的卷积神经网络(Faster RCNN),对焊缝缺陷D扫描图像中的缺陷类型进行自动识别;在网络训练过程中,提出了采用样本扩展及建议框优化方法以提高网络训练的稳定性及效率。结果表明:缺陷的TOFD-D扫描图像的轮廓与缺陷几何形状密切相关,可用于判断缺陷类型;Faster RCNN网络虽然可能对界面波及噪声造成误判,但对缺陷类型的识别率可达到97%以上,可实现缺陷类型的自动识别,并具有高识别率、鲁棒性和抗干扰能力。 展开更多
关键词 D扫描图像 焊缝缺陷 自动识别 基于区域快速卷积神经网络
下载PDF
基于改进区域卷积神经网络的SAR图像船只检测方法 被引量:1
12
作者 石洪基 郎海涛 +3 位作者 宋棋 聂晓风 郭展宏 刘梦茜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S02期185-191,共7页
准确地掌握船只目标的位置和分布对海上交通管理、海洋事故救援及海洋环境保护等非常重要。近年来,合成孔径雷达(SAR)广泛应用到海上船只目标探测中。本文提出一种基于深度学习框架的船只检测方法,该方法根据SAR图像中船只目标的特点,... 准确地掌握船只目标的位置和分布对海上交通管理、海洋事故救援及海洋环境保护等非常重要。近年来,合成孔径雷达(SAR)广泛应用到海上船只目标探测中。本文提出一种基于深度学习框架的船只检测方法,该方法根据SAR图像中船只目标的特点,对区域卷积神经网络的输入部分及目标候选框提取部分做出了适应性改进,并对训练方法进行了优化。实验表明,本文提出的方法能够在不同分辨率的SAR图像中检测出密集分布、沿岸分布等不同场景下不同大小的船只目标,且检测结果不受旁瓣等噪声的干扰,能够完整地保留船只目标的细节信息,实现整体检测。 展开更多
关键词 船只目标检测 快速区域卷积神经网络 深度学习 合成孔径雷达
下载PDF
基于可变形卷积神经网络的遥感影像密集区域车辆检测方法 被引量:21
13
作者 高鑫 李慧 +5 位作者 张义 闫梦龙 张宗朔 孙显 孙皓 于泓峰 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2812-2819,共8页
车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上... 车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上述问题,该文提出基于端到端的神经网络模型DF-RCNN以提高车辆密集区域的检测精度。首先,在特征提取阶段,DF-RCNN模型将深浅层特征图的分辨率统一并融合;其次,DFRCNN模型结合可变形卷积和可变形感兴趣区池化模块,通过加入少量的参数和计算量以学习目标的几何形变。实验结果表明,该文提出的模型针对密集区域的车辆目标具有较好的检测性能。 展开更多
关键词 遥感影像 车辆检测 密集区域 端到端卷积神经网络
下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
14
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
下载PDF
基于快速滤波算法的卷积神经网络加速器设计 被引量:6
15
作者 王巍 周凯利 +2 位作者 王伊昌 王广 袁军 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2578-2584,共7页
为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据... 为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据,并通过标志信号启动卷积计算加速单元来实现逐层加速;其次,设计了基于4并行快速滤波算法的卷积计算加速单元,该单元采用若干小滤波器组成的复杂度较低的并行滤波结构来实现。利用手写数字集MNIST对所设计的CNN加速器电路进行测试,结果表明:在xilinx kintex7平台上,输入时钟为100 MHz时,电路的计算性能达到了20.49 GOPS,识别率为98.68%。可见通过减少CNN的计算量,能够提高电路的计算性能。 展开更多
关键词 卷积神经网络 快速滤波算法 FPGA 并行结构
下载PDF
基于改进区域卷积神经网络的安全帽佩戴检测 被引量:18
16
作者 徐守坤 王雅如 顾玉宛 《计算机工程与设计》 北大核心 2020年第5期1385-1389,共5页
针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在... 针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在线困难样本挖掘技术训练ROI网络,自动挑选出困难样本使训练更加有效。实验结果表明,相比原始的Faster RCNN算法,所提方法检测精度提高了4.73%,对部分遮挡和小尺寸目标均有较好的检测效果,对环境变化具有更强的适应性。 展开更多
关键词 安全帽佩戴检测 区域卷积神经网络 区域建议网络 多层卷积特征融合 在线困难样本挖掘
下载PDF
基于深度卷积神经网络的异常行为快速识别 被引量:6
17
作者 龙翔 韩兰胜 王伟豪 《火力与指挥控制》 CSCD 北大核心 2023年第1期26-32,共7页
针对异常行为快速识别问题,提出了一种基于深度卷积神经网络的视频检测和定位方法。该方法利用全卷积神经网络和时间数据,将一个预先经过训练和监督的全卷积神经网络转移到一个无监督的全卷积神经网络,确保能够检测全局场景中的异常,提... 针对异常行为快速识别问题,提出了一种基于深度卷积神经网络的视频检测和定位方法。该方法利用全卷积神经网络和时间数据,将一个预先经过训练和监督的全卷积神经网络转移到一个无监督的全卷积神经网络,确保能够检测全局场景中的异常,提出利用级联检测的方式来降低算法的计算复杂度,从而使其在速度和精度方面获得较高的性能。提出的基于全卷积神经网络的异常行为检测架构解决了两个主要任务,即特征表示和级联离群值检测。实验结果表明,所提方法在检测和定位精度上优于现有算法,且运行速度更快,从而表明所提算法的有效性和可行性。 展开更多
关键词 异常检测 卷积神经网络 拥挤场景 快速识别 异常行为
下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:4
18
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
下载PDF
基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究 被引量:8
19
作者 刘凯 刘志刚 陈隽文 《铁道学报》 EI CAS CSCD 北大核心 2019年第7期43-49,共7页
针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特... 针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特点,通过Radon变换等预处理操作对承力索底座疑似裂纹区域精确定位,最后使用基于Beamlet变换的局部链搜索算法快速得到裂纹信息,实现承力索底座裂纹故障的可靠诊断。实验表明:该方法能在复杂的接触网支撑与悬挂装置图像中准确定位识别承力索底座裂纹故障,对拍摄距离、拍摄角度以及曝光度等因素具有很好的适应性,且具有较高的检测效率。 展开更多
关键词 高铁接触网 承力索底座 加速区域卷积神经网络 BEAMLET变换
下载PDF
基于快速选区卷积神经网络模型的工业产品表面缺陷检测 被引量:4
20
作者 李馥颖 朱振杰 杜付鑫 《济南大学学报(自然科学版)》 CAS 北大核心 2021年第5期417-422,共6页
针对传统带钢表面缺陷检测算法检测效率低、准确率差的情况,提出一种基于快速选区卷积神经网络模型的多尺度带钢表面缺陷检测算法;首先利用残差网络思想对该模型网络特征提取层进行改进;其次,利用多尺度推荐区域网络设置合理大小的卷积... 针对传统带钢表面缺陷检测算法检测效率低、准确率差的情况,提出一种基于快速选区卷积神经网络模型的多尺度带钢表面缺陷检测算法;首先利用残差网络思想对该模型网络特征提取层进行改进;其次,利用多尺度推荐区域网络设置合理大小的卷积滑动窗口,提取出更加准确的推荐区域;最后,利用软判决非极大值抑制机制替代传统的非极大值抑制机制,解决缺陷特征相近时检测框丢失的情况,并在SD_data数据集上进行实验验证。结果表明,所提出的算法对多尺度带钢表面缺陷的检测准确率明显提高,漏检率显著降低。 展开更多
关键词 表面缺陷检测 多尺度推荐区域网络 卷积神经网络
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部