The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (...The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system.The results show that A-type zeolite can influence methane hydrate formation.At the temperature of 273.5 K and pressure of 8.3 MPa,the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours.The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly.The adding of A-type zeolite with 0.067 g·(g water)-1 into 2×10-3 g·g-1 SDS-water solution can increase the gas storage capacity,and the maximum increase rate was 31%.Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1 and 0.067 g·g-1 at the experimental conditions.展开更多
The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate in sulfuric acid solutions were measured at temperatures ranging from 278,15 to 338.15 K by using a dynamic method. The conc...The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate in sulfuric acid solutions were measured at temperatures ranging from 278,15 to 338.15 K by using a dynamic method. The concentration of sulfuric acid solution ranged from 0 to 80wt%. The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate increased with temperature, and both of them were the lowest at 70wt% of sulfuric acid solution ( w3 0 = 0.70) while the highest in pure water. The solubility data were correlated by the modified Apelblat equation. Based on the solubility difference between 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate, a new technique in which sodium sulfate was used to replace sodium sulfite in the neutralization reaction was developed. The suitable mole ratio of H20 to Na2SO4 in the neutralization reaction was 80 : 1, and that of 2-naphthalenesulfonic acid monohydrate to Na2SO4 was 3.2 : 1. The material balance under the suitable mole ratios was given and discussed.展开更多
An experimental investigation of natural gas hydrate formation has been conducted in a high-pressure water spraying reactor,which is cooled by the circulation water through an external cooling jacket.The results show ...An experimental investigation of natural gas hydrate formation has been conducted in a high-pressure water spraying reactor,which is cooled by the circulation water through an external cooling jacket.The results show that the morphology of hydrates formed by water spraying is like ice-slurry,which depends on the initial pressure and temperature.At a certain reaction pressure,the rate of hydrate formation is increasing with lower temperature.And also,the induction time of hydrate formation can be greatly shortened by water spraying compared to a quiescent system.Solution with appropriate surfactant sodium dodecyl sulfate (SDS) is found to improve the formation rate obviously.展开更多
Hydrothermal deposition of antimony selenosulfide(Sb_(2)(S,Se_(3)))has enabled solar cell applications to surpass the 10%efficiency threshold.This deposition process involves the reaction of three precursor materials:...Hydrothermal deposition of antimony selenosulfide(Sb_(2)(S,Se_(3)))has enabled solar cell applications to surpass the 10%efficiency threshold.This deposition process involves the reaction of three precursor materials:Sb,S,and Se.However,this process generates an unfavourable gradient of Se and S anions in the Sb_(2)(S,Se)_(3)film,which limits further efficiency improvements.Herein,we demonstrate how NH_(4)F can be used as an additive to regulate the band gradient of the Sb_(2)(S,Se)_(3)and modify the surface of the CdS electron-transporting layer.On the one hand,NH_(4)F inhibits the decomposition of Na_(2)S_(2)O_(3)and selenourea,which optimizes the deposition process and allows for adjustment of the Se/S ratio and their distribution in the Sb_(2)(S,Se)_(3)film.On the other hand,hydrolysis of NH_(4)F induces dissolution and redeposition of CdS,thereby effectively improving the morphology and crystallinity of the CdS substrate.Finally,the dual effect of NH_(4)F enables improved surface morphology and energy alignment of the Sb_(2)(S,Se)_(3)film,thus yielding a maximum efficiency of 10.28%,a 12%improvement over the control device.This study demonstrates an effective strategy for simultaneously modifying a sulfide-based substrate and regulating the element distribution during the deposition of a metal chalcogenide film for optoelectronic device applications.展开更多
基金Supported by the National Natural Science Foundation of China (50876107), the National Basic Research Program of China (2009CB219504), NSFC-Guangdong Union Foundation (NSFC-U0733033) and CAS Program (KGCX2-YW-805).
文摘The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system.The results show that A-type zeolite can influence methane hydrate formation.At the temperature of 273.5 K and pressure of 8.3 MPa,the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours.The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly.The adding of A-type zeolite with 0.067 g·(g water)-1 into 2×10-3 g·g-1 SDS-water solution can increase the gas storage capacity,and the maximum increase rate was 31%.Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1 and 0.067 g·g-1 at the experimental conditions.
文摘The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate in sulfuric acid solutions were measured at temperatures ranging from 278,15 to 338.15 K by using a dynamic method. The concentration of sulfuric acid solution ranged from 0 to 80wt%. The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate increased with temperature, and both of them were the lowest at 70wt% of sulfuric acid solution ( w3 0 = 0.70) while the highest in pure water. The solubility data were correlated by the modified Apelblat equation. Based on the solubility difference between 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate, a new technique in which sodium sulfate was used to replace sodium sulfite in the neutralization reaction was developed. The suitable mole ratio of H20 to Na2SO4 in the neutralization reaction was 80 : 1, and that of 2-naphthalenesulfonic acid monohydrate to Na2SO4 was 3.2 : 1. The material balance under the suitable mole ratios was given and discussed.
基金National Natural Science Foundation of China(No.50706028)Shanghai Leading Academic Discipline Project,China(No.S30503)
文摘An experimental investigation of natural gas hydrate formation has been conducted in a high-pressure water spraying reactor,which is cooled by the circulation water through an external cooling jacket.The results show that the morphology of hydrates formed by water spraying is like ice-slurry,which depends on the initial pressure and temperature.At a certain reaction pressure,the rate of hydrate formation is increasing with lower temperature.And also,the induction time of hydrate formation can be greatly shortened by water spraying compared to a quiescent system.Solution with appropriate surfactant sodium dodecyl sulfate (SDS) is found to improve the formation rate obviously.
基金the National Natural Science Foundation of China(22005293 and U19A2092)the National Key Research and Development Program of China(2019YFA0405600).
文摘Hydrothermal deposition of antimony selenosulfide(Sb_(2)(S,Se_(3)))has enabled solar cell applications to surpass the 10%efficiency threshold.This deposition process involves the reaction of three precursor materials:Sb,S,and Se.However,this process generates an unfavourable gradient of Se and S anions in the Sb_(2)(S,Se)_(3)film,which limits further efficiency improvements.Herein,we demonstrate how NH_(4)F can be used as an additive to regulate the band gradient of the Sb_(2)(S,Se)_(3)and modify the surface of the CdS electron-transporting layer.On the one hand,NH_(4)F inhibits the decomposition of Na_(2)S_(2)O_(3)and selenourea,which optimizes the deposition process and allows for adjustment of the Se/S ratio and their distribution in the Sb_(2)(S,Se)_(3)film.On the other hand,hydrolysis of NH_(4)F induces dissolution and redeposition of CdS,thereby effectively improving the morphology and crystallinity of the CdS substrate.Finally,the dual effect of NH_(4)F enables improved surface morphology and energy alignment of the Sb_(2)(S,Se)_(3)film,thus yielding a maximum efficiency of 10.28%,a 12%improvement over the control device.This study demonstrates an effective strategy for simultaneously modifying a sulfide-based substrate and regulating the element distribution during the deposition of a metal chalcogenide film for optoelectronic device applications.