The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the w...The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.展开更多
Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether bio...Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.展开更多
The Genisteae tribe belongs to the Fabaceae family.The wide occurrence of secondary metabolites,explicitly high-lighting the quinolizidine alkaloids(QAs),characterizes this tribe.In the present study,twenty QAs(1-20),...The Genisteae tribe belongs to the Fabaceae family.The wide occurrence of secondary metabolites,explicitly high-lighting the quinolizidine alkaloids(QAs),characterizes this tribe.In the present study,twenty QAs(1-20),including lupanine(1-7),sparteine(8-10),lupanine(11),cytisine and tetrahydrocytisine(12-17),and matrine(18-20)-type QAs were extracted and isolated from leaves of three species(i.e.,Lupinus polyphyllus(’rusell’hybrid),Lupinus muta-bilis,and Genista monspessulana)belonging to the Genisteae tribe.These plant sources were propagated under greenhouse conditions.The isolated compounds were elucidated by analyzing their spectroscopical data(MS,NMR).The antifungal effect on the mycelial growth of Fusarium oxysporum(Fox)of each isolated QA was then evaluated through the amended medium assay.The best antifungal activity was found to be for compounds 8(IC_(50)=16.5μM),9(IC_(50)=7.2μM),12(IC_(50)=11.3μM),and 18(IC_(50)=12.3μM).The inhibitory data suggest that some QAs could effi-ciently inhibit Fox mycelium growth depending on particular structural requirements deduced from structure-activity relationship scrutinies.The identified quinolizidine-related moieties can be involved in lead structures to develop further antifungal bioactives against Fox.展开更多
Fusarium wilt is a common fungal disease in sesame caused by Fusarium oxysporum f.sp.sesami(FOS).To determine the toxin production profiles of the FOS isolates with different pathogenicity levels under various culture...Fusarium wilt is a common fungal disease in sesame caused by Fusarium oxysporum f.sp.sesami(FOS).To determine the toxin production profiles of the FOS isolates with different pathogenicity levels under various culture conditions,we assessed the content variation of fusaric acid(FA)and 9,10-dehydrofusaric acid(9,10-DFA)produced by the four representative FOS isolates.Results indicated that the concentration of FA reached to a maximum of 2848.66μg/mL in Czapek medium,while 9,10-DFA was mainly produced in Richard and Lowcarbon Richard medium.The concentration of 9,10-DFA on Richard culture medium varied from 0μg/mL to 716.89μg/mL.Of the five culture media used in this study,Czapek culture medium was the most conductive to produce FA.FA production was significantly affected by culture medium,culture time,and their interactions.Results suggest that there is no correlation between toxin production and pathogenicity level of FOS isolates.These findings provide key information for the mechanism analysis of FOS-sesame interaction and pathogen control.展开更多
Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this ...Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.展开更多
[Objective]The paper was to screen fungicides with strong antifungal activities against Fusarium oxysporum Schlecht,and to provide a theoretical basis for controlling root-rot of Rhodiola sachalinensis A. Bor. [Method...[Objective]The paper was to screen fungicides with strong antifungal activities against Fusarium oxysporum Schlecht,and to provide a theoretical basis for controlling root-rot of Rhodiola sachalinensis A. Bor. [Method]Using mycelial growth rate method,the indoor antifungal activities of eight fungicides against F. oxysporum were studied. [Result]Eight fungicides at different concentrations performed different antifungal activities. Toxicity test results showed that the EC_(50) value of Difenoconazole was the smallest( 4. 267 4 mg/L),followed by Mancozeb( 6. 952 5 mg/L),and the EC_(50) of Thiram,Captan and Procymidone were relatively small from 25 to 50 mg/L. [Conclusion]Among eight fungicides,Difenoconazole had the best antifungal effect against F. oxysporum,while Mancozeb,Thiram,Captan and Procymidone had good control effects as well.展开更多
[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[...[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.展开更多
[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,...[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...展开更多
[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of...[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.展开更多
文摘The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.
基金supported by the earmarked fund for National Natural Science Foundation of China(Grant No.31801816)National Modern Agro-industry Technology Research System(Grant No.CARS-27)Taishan scholar funded project(Grant No.TS20190923)。
文摘Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.
基金the Vicerrectoría de Investigaciones at the Universidad Militar Nueva Granada(UMNG)through the project IMP-CIAS-2924,validity 2020.
文摘The Genisteae tribe belongs to the Fabaceae family.The wide occurrence of secondary metabolites,explicitly high-lighting the quinolizidine alkaloids(QAs),characterizes this tribe.In the present study,twenty QAs(1-20),including lupanine(1-7),sparteine(8-10),lupanine(11),cytisine and tetrahydrocytisine(12-17),and matrine(18-20)-type QAs were extracted and isolated from leaves of three species(i.e.,Lupinus polyphyllus(’rusell’hybrid),Lupinus muta-bilis,and Genista monspessulana)belonging to the Genisteae tribe.These plant sources were propagated under greenhouse conditions.The isolated compounds were elucidated by analyzing their spectroscopical data(MS,NMR).The antifungal effect on the mycelial growth of Fusarium oxysporum(Fox)of each isolated QA was then evaluated through the amended medium assay.The best antifungal activity was found to be for compounds 8(IC_(50)=16.5μM),9(IC_(50)=7.2μM),12(IC_(50)=11.3μM),and 18(IC_(50)=12.3μM).The inhibitory data suggest that some QAs could effi-ciently inhibit Fox mycelium growth depending on particular structural requirements deduced from structure-activity relationship scrutinies.The identified quinolizidine-related moieties can be involved in lead structures to develop further antifungal bioactives against Fox.
基金financially supported by China Agriculture Research System of MOF and MARA(CARS-14)the Key Project of Science and Technology of Henan province(201300110600)+4 种基金Zhongyuan Science and Technology Innovation Leading Talent Plan(214200510020)the Zhongyuan Scientist Workshop Construction(214400510026)the Science and Technology Research Project of Henan Province(222102110081)Key Research and Development Project of Henan Province(22111520400)Distinguished Young Scholars from Henan Academy of Agricultural Sciences(2022JQ01).
文摘Fusarium wilt is a common fungal disease in sesame caused by Fusarium oxysporum f.sp.sesami(FOS).To determine the toxin production profiles of the FOS isolates with different pathogenicity levels under various culture conditions,we assessed the content variation of fusaric acid(FA)and 9,10-dehydrofusaric acid(9,10-DFA)produced by the four representative FOS isolates.Results indicated that the concentration of FA reached to a maximum of 2848.66μg/mL in Czapek medium,while 9,10-DFA was mainly produced in Richard and Lowcarbon Richard medium.The concentration of 9,10-DFA on Richard culture medium varied from 0μg/mL to 716.89μg/mL.Of the five culture media used in this study,Czapek culture medium was the most conductive to produce FA.FA production was significantly affected by culture medium,culture time,and their interactions.Results suggest that there is no correlation between toxin production and pathogenicity level of FOS isolates.These findings provide key information for the mechanism analysis of FOS-sesame interaction and pathogen control.
基金National Natural Sciences Foundation of China(31760586).
文摘Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.
基金Supported by Innovation and Entrepreneurship Training Program of College Students at Yanbian University in 2017(ydbksky2017444)University-Enterprise Cooperation of Yanbian University[(2015)No.6]
文摘[Objective]The paper was to screen fungicides with strong antifungal activities against Fusarium oxysporum Schlecht,and to provide a theoretical basis for controlling root-rot of Rhodiola sachalinensis A. Bor. [Method]Using mycelial growth rate method,the indoor antifungal activities of eight fungicides against F. oxysporum were studied. [Result]Eight fungicides at different concentrations performed different antifungal activities. Toxicity test results showed that the EC_(50) value of Difenoconazole was the smallest( 4. 267 4 mg/L),followed by Mancozeb( 6. 952 5 mg/L),and the EC_(50) of Thiram,Captan and Procymidone were relatively small from 25 to 50 mg/L. [Conclusion]Among eight fungicides,Difenoconazole had the best antifungal effect against F. oxysporum,while Mancozeb,Thiram,Captan and Procymidone had good control effects as well.
基金Supported by National Natural Science Foundation of China(30960010 )Principal Fund Key Projects of Tarim University(TDZKZD06001)~~
文摘[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.
基金Supported by the 10th Five Years Program for Science and Technol-ogy Development of Anhui Province(01013011)Open Foundation Project of Key Lab for Food Safety of Anhui Province(las200508)~~
文摘[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...
文摘[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.