期刊文献+
共找到7,562篇文章
< 1 2 250 >
每页显示 20 50 100
BnaWRKY75 positively regulates the resistance against Sclerotinia sclerotiorum in ornamental Brassica napus 被引量:1
1
作者 Kexin Yu Yijie Zhang +4 位作者 Xiaoyuan Fei Luyue Ma Rehman Sarwar Xiaoli Tan Zheng Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期784-796,共13页
With the development of tourism at home and abroad,Rapeseed(Brassica napus)has become an important ornamental plant.However,its ornamental value at the inflorescence stage is greatly reduced by Sclerotinia sclerotioru... With the development of tourism at home and abroad,Rapeseed(Brassica napus)has become an important ornamental plant.However,its ornamental value at the inflorescence stage is greatly reduced by Sclerotinia sclerotiorum.Identification of important genes in the defense responses is critical for molecular breeding,which is an important strategy for controlling the disease.In this study,we isolated a B.napus WRKY transcription factor gene,BnaWRKY75.BnaWRKY75 was found to encode a nucleus-localized protein and exhibited relatively high expression in the stems.Arabidopsis thaliana transgenic plants expressing BnaWRKY75 showed enhanced resistance to S.sclerotiorum,and both ProBnaWRKY75:GUS and gene expression analyses showed that BnaWRKY75 was highly responsive to S.sclerotiorum infection,indicating the involvement of BnaWRKY75 in response to this infection.Furthermore,overexpression(OE)of BnaWRKY75 in B.napus significantly enhanced the resistance to S.sclerotiorum,whereas the resistance was reduced in RNAi transgenic B.napus plants.Moreover,the BnaWRKY75-OE B.napus plants exhibited constitutive activation of salicylic acid-,jasmonic acid-,and ethylene-mediated defense responses and the inhibition of both H_(2)O_(2)and O_(2)·^(-)accumulation in response to this pathogen.By contrast,BnaWRKY75-RNAi plants showed a reverse pattern,suggesting that BnaWRKY75 is involved in hormonal signaling pathways and in the control of reactive oxygen species accumulation.In conclusion,these data indicate that BnaWRKY75,a regulator of multiple defense responses,positively regulates resistance against S.sclerotiorum,which may guide the improvement of resistance in rapeseed. 展开更多
关键词 brassica napus BnaWRKY75 Defense response Sclerotinia sclerotiorum
下载PDF
Molecular mechanism of flowering time regulation in Brassica rapa:similarities and differences with Arabidopsis
2
作者 Na Li Rui Yang +1 位作者 Shuxing Shen Jianjun Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期615-628,共14页
Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates envi... Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates environmental signals and internal conditions to ensure that flowering takes place under favorable conditions.Brassica rapa is a diploid Cruciferae species that includes several varieties that are cultivated as vegetable or oil crops.Flowering time is one of the most important agricultural traits of B.rapa crops because of its influence on yield and quality.The transition to flowering in B.rapa is regulated by several environmental and developmental cues,which are perceived by several signaling pathways,including the vernalization pathway,the autonomous pathway,the circadian clock,the thermosensory pathway,and gibberellin(GA)signaling.These signals are integrated to control the expression of floral integrators BrFTs and BrSOC1s to regulate flowering.In this review,we summarized current research advances on the molecular mechanisms that govern flowering time regulation in B.rapa and compare this to what is known in Arabidopsis. 展开更多
关键词 Flowering time brassica rapa VERNALIZATION PHOTOPERIOD
下载PDF
BnaC03.BIN2 regulates plant height by affecting the main inflorescence length and first effective branch height in Brassica napus L.
3
作者 Chengke Pang Jun Yu +8 位作者 Liang Zhang Min Tang Hongfang Liu Ying Cai Feng Chen Jiefu Zhang Wei Hua Xiaodong Wang Ming Zheng 《The Crop Journal》 SCIE CSCD 2024年第4期1102-1111,共10页
Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effect... Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture. 展开更多
关键词 brassica napus Plant height BRASSINOSTEROIDS BIN2
下载PDF
Utilizing resequencing big data to facilitate Brassica vegetable breeding:tracing introgression pedigree and developing highly specific markers for clubroot resistance
4
作者 Zhiyong Ren Jinquan Li +5 位作者 Xingyu Zhang Xingxu Li Junhong Zhang Zhibiao Ye Yuyang Zhang Qijun Nie 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期771-783,共13页
Clubroot caused by Plasmodiophora brassicae is a devastating disease of Cruciferous crops.Developing cultivars with clubroot resistance(CR)is the most effective control measure.For the two major Brassica vegetable spe... Clubroot caused by Plasmodiophora brassicae is a devastating disease of Cruciferous crops.Developing cultivars with clubroot resistance(CR)is the most effective control measure.For the two major Brassica vegetable species B.rapa and B.oleracea,several commercial cultivars with unclear CR pedigrees have been intensively used as CR donors in breeding.However,the continuous occurrence of CR-breaking makes the CR pedigree underlying these cultivars one of the breeders'most urgent concerns.The complex intraspecific diversity of these two major Brassica vegetables has also limited the applicability of CR markers in different breeding programs.Here we first traced the pedigree underlying two kinds of CR that have been widely applied in breeding by linkage and introgression analyses based on public resequencing data.In B.rapa,a major locus CRzi8 underlying the CR of the commercial CR donor‘DegaoCR117’was identified.CRzi8 was further shown to have been introgressed from turnip(B.rapa ssp.rapifera)and that it carried a potential functional allele of Crr1a.The turnip introgression carried CRb^(c),sharing the same coding sequence with the CRb that was also identified from chromosome C07 of B.oleracea CR cultivars with different morphotypes.Within natural populations,variation analysis of linkage intervals of CRzi8,PbBa8.1,CRb,and CRb^(c)yielded easily resolved InDel markers(>20 bp)for these fundamental CR genes.The specificity of these markers was tested in diverse cultivars panels,and each exhibited high reliability in breeding.Our research demonstrates the value of the practice of applying resequencing big data to solve urgent concerns in breeding programs. 展开更多
关键词 brassica Clubroot resistance RESEQUENCING Introgression analysis Molecular marker
下载PDF
Improved genome annotation of Brassica oleracea highlights the importance of alternative splicing
5
作者 Yinqing Yang Lei Zhang +7 位作者 Qi Tang Lingkui Zhang Xing Li Shumin Chen Kang Zhang Ying Li Xilin Hou Feng Cheng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期961-970,共10页
Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha... Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms. 展开更多
关键词 brassica oleracea Oxford nanopore technologies Gene annotation Alternative splicing
下载PDF
Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus
6
作者 Jianjun Wang Yanan Shao +4 位作者 Xin Yang Chi Zhang Yuan Guo Zijin Liu Mingxun Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1864-1878,共15页
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi... Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation. 展开更多
关键词 LuSAD oleic acid cold tolerance drought tolerance Linum usitatissimum brassica napus
下载PDF
Turnip mosaic virus pathogenesis and host resistance mechanisms in Brassica
7
作者 Guanwei Wu Xinxin Fang +2 位作者 Tianqi Yu Jianping Chen Fei Yan 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期947-960,共14页
Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the... Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops. 展开更多
关键词 Turnip mosaic virus brassica Resistance genes Host factors Infection biology
下载PDF
Growing Development and Physiological Characteristics of Seeds Harvested Different Days after Pollination and Their 7-day Seedlings of Two Yellow-Seeded Cultivars of Brassica napus L.
8
作者 GAO You-li ZHANG Long-yan +5 位作者 KANG Lei CHEN Xing-ke ZOU Ke WANG Xiang-juan ZHANG Wei TANG Shan-shan 《Agricultural Science & Technology》 CAS 2024年第3期6-13,共8页
This study aimed to understand the growing development and physiological characteristics of seeds harvested different days after pollination and the seedlings emerged from the seeds of yellow-seeded Brassica napus L..... This study aimed to understand the growing development and physiological characteristics of seeds harvested different days after pollination and the seedlings emerged from the seeds of yellow-seeded Brassica napus L..Two yellow-seeded cultivars‘Hongyuan 558’and‘Qinyou 806’were selected in this study,and 50 seeds were collected 30,35,and 40 d after pollination,respectively.The seeds were weighed and placed on filter paper for hydroponic experiments.The seed germination rate was determined 3-5 d later.The physiological indicators including superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT)activities and malondialdehyde(MDA)content were measured for the seeds harvested different days after pollination and the 7-day-seedlings emerged from the seeds.The results showed that the seed dry weights and germination rates of both‘Qinyou 806’and‘Hongyuan 558’increased as the days after pollination increased,especially 30-35 d after pollination.The germination rate and dry and fresh weights of the seeds showed no significant differences between the two cultivars,and almost all the seeds germinated 40 d after pollination.As the days after pollination increased,the SOD activities in the seeds of both cultivars first increased and then decreased,reaching their peaks 35 d after pollination,which may be related to encountering adverse stress.The POD activity in the seeds of‘Qinyou 806’kept declining,and that of‘Hongyuan 558’first increased and then decreased,which may be related to the antioxidant mechanism and adaptive regulation.The CAT activities in the seeds of both cultivars first decreased and then increased.The MDA content in the seeds of‘Qinyou 806’first decreased and then increased,while that of‘Hongyuan 558’kept reducing and was the highest in the seeds 30 d after pollination,which indicated‘Hongyuan 558’was mildly affected by the environment and had strong resistance.The activities of SOD and POD in the seedlings of two cultivars that were emerged from the seeds 35-40 d after pollination became weakened,which may be related to their exposure to stress.The CAT activity in the seedlings of‘Hongyuan 558’was generally higher than that of‘Qinyou 806’,indicating that‘Hongyuan 558’had stronger stress resistance.The MDA content in the seedlings emerged from the seeds 35-40 d after pollination showed a decreasing trend,indicating that the seedlings emerged from the seeds harvested at this stage had mild cell membrane damage and enhanced stress resistance.In conclusion,‘Hongyuan 558’had strong environmental adaptability and stress resistance. 展开更多
关键词 Yellow-seeded brassica napus Superoxide dismutase PEROXIDASE CATALASE MALONDIALDEHYDE
下载PDF
The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.:changes in the nutritional constituents,bioactivities and bioaccessibility
9
作者 Wen Wang Zhixiong He +3 位作者 Ruiying Zhang Min Li Zhenxia Xu Xia Xiang 《Oil Crop Science》 CSCD 2024年第2期81-90,共10页
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en... Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods. 展开更多
关键词 Se-enriched brassica napus L. FERMENTATION Antioxidant activity Inhibitory activity BIOACCESSIBILITY
下载PDF
Landscape of Sequence Variations in Homologous Copies of FAD2 and FAD3 in Rapeseed(Brassica napus L.)Germplasm with High/Low Linolenic Acid Trait
10
作者 Haoxue Wu Xiaohan Zhang +5 位作者 Xiaoyu Chen Kang Li Aixia Xu Zhen Huang Jungang Dong Chengyu Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期627-640,共14页
Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har... Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes. 展开更多
关键词 brassica napus linolenic acid FAD2 FAD3 promoter coding sequences mutation
下载PDF
Effect of Foliar Fertilizer Spraying at Seedling Stage on the Growth Physiological Characteristics and Yield of Brassica napus L.
11
作者 LU Ping-jun LI Fang-yan +1 位作者 CHEN Hao HUI Rong-kui 《Agricultural Science & Technology》 CAS 2024年第2期7-12,共6页
In order to select a suitable foliar fertilizer for Brassica napus L.at the seedling stage,using‘Fengyou 958’as the material,different foliar fertilizers including BR,Se,Si,BR+Si,BR+Se,Se+Si and BR+Se+Si were spraye... In order to select a suitable foliar fertilizer for Brassica napus L.at the seedling stage,using‘Fengyou 958’as the material,different foliar fertilizers including BR,Se,Si,BR+Si,BR+Se,Se+Si and BR+Se+Si were sprayed at the seedling stage to study their effect on the physiological characteristics,growth and yield of Brassica napus L..The results showed that the growth,chlorophyll content,soluble sugar content,soluble protein content,and yield of different treatments at the budding stage improved compared with the control.The effect of the Si+Se treatment was the best,followed by the Se and Si treatments.The chlorophyll content of the flower decreased continuously during the whole flowering period,and the chlorophyll content of the mature silique peel was higher than that of the seed.The content of soluble sugar in flowers was the highest in the early flowering stage,and the content of soluble sugar in leaves at the flowering stage was higher than that at the budding stage.The soluble sugar content in the harvested silique peel decreased gradually with the increase of time,and that in the silique peel and seed was similar at 35 d after pollination.The soluble protein content in the silique peel and seed decreased gradually at the mature stage,and the soluble protein content in the silique peel was higher than that in the seed at the same stage.Si+Se foliar fertilizer spraying at the seedling stage can promote the growth and yield of Brassica napus L.and can be applied in Brassica napus L.production. 展开更多
关键词 brassica napus L. CHLOROPHYLL Soluble sugar Soluble protein
下载PDF
Editing of eIF(iso)4E.c confers resistance against Turnip mosaic virus in Brassica rapa
12
作者 Yujia Liu Xiaoyun Xin +9 位作者 Peirong Li Weihong Wang Yangjun Yu Xiuyun Zhao Deshuang Zhang Jiao Wang Fenglan Zhang Shujiang Zhang Shuancang Yu Tongbing Su 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期1020-1034,共15页
Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated t... Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV. 展开更多
关键词 brassica rapa eIF(iso)4E.c TUMV Ribo-seq
下载PDF
Cloning of BjNAC102 Promoter and Construction of Expression Vector in Brassica juncea
13
作者 XIAO Xin-bo YUAN Yu-hui +5 位作者 YOU Liang HUANG Xin CHEN Ming-zhe MA Yin-hua LIU Xian-jun CHEN Hu 《Agricultural Science & Technology》 CAS 2024年第3期14-20,共7页
Transcription factor NAC102 plays an important role in the abiotic stress responses of plants.In this study,the promoter sequence of 3000 bp located in the upstream of the BjNAC102 gene was cloned from Brassica juncea... Transcription factor NAC102 plays an important role in the abiotic stress responses of plants.In this study,the promoter sequence of 3000 bp located in the upstream of the BjNAC102 gene was cloned from Brassica juncea‘Sichuan Yellow Seed’by using the homologous cloning method.The expression vector of the GUS gene driven by the BjNAC102 promoter was constructed by seamless cloning technology.The results showed that the sequence of the promoter of the BjNAC102 gene contained many cis-acting elements involved in light responsiveness,gibberellinresponsive element,and auxin-responsive element.It was speculated that BjNAC102 played an important role in the abiotic stress response in Brassica juncea.The expression vector of the promoter of the BjNAC102 gene was constructed,which layed a foundation for further studies of the expression pattern of the BjNAC102 gene in Brassica juncea. 展开更多
关键词 brassica juncea PROMOTER BjNAC102 Plant expression vector construction
下载PDF
Knock-out of BnHva22c reduces the susceptibility of Brassica napus to infection with the fungal pathogen Verticillium longisporum
14
作者 Wanzhi Ye Roxana Hossain +6 位作者 Michael Prbsting Abdallah Abdelmegid Mohamed Ali Lingyue Han Ying Miao Steffen Rietz Daguang Cai Dirk Schenke 《The Crop Journal》 SCIE CSCD 2024年第2期503-514,共12页
Verticillium longisporum(Vl43)is a soilborne hemibiotrophic fungal pathogen causing stem striping on oilseed rape(OSR)and severe yield losses.Breeding for resistant varieties is the most promising approach to control ... Verticillium longisporum(Vl43)is a soilborne hemibiotrophic fungal pathogen causing stem striping on oilseed rape(OSR)and severe yield losses.Breeding for resistant varieties is the most promising approach to control this disease.Here,we report the identification of Hva22c as a novel susceptibility factor and its potential for improving OSR resistance.Hva22c is a member of the Hva22 gene family,originally described for barley(Hordeum vulgare).Several Hva22 members have been located at the endoplasmic reticulum.Hva22c is up-regulated in response to Vl43 in both Arabidopsis and OSR.We demonstrate that knock-out of Hva22c in OSR by CRISPR/Cas9 and its homolog in Arabidopsis by T-DNA insertion reduced plants’susceptibility to Vl43 infection and impaired the development of disease symptoms.To understand the underlying mechanism,we analysed transcriptomic data from infected and non-infected roots of hva22c knock-out and wild type plants.We identified a homozygous mutant with frame-shifts in all four BnHva22c loci displaying a vastly altered transcriptional landscape at 6 dpi.Significantly,a large set of genes was suppressed under mock conditions including genes related to the endomembrane systems.Among the up-regulated genes we found several defense-related and phytohormone-responsive genes when comparing mutant to the wild type.These results demonstrate that Hva22c is functionally required for a fully compatible plant-fungus interaction.Its loss of function reduces plant susceptibility,most likely due to endoplasmatic reticulum and Golgi dysfunction accompanied by additionally activated defense responses.These findings can help improve OSR resistance to V.longisporum infection. 展开更多
关键词 Hva22c Susceptibility factor CRISPR/Cas9 brassica napus ARABIDOPSIS Verticillium longisporum Resistance breeding
下载PDF
Development of a KASP Marker on Chromosome A05 for Seed Oil Content of Brassica napus
15
作者 YANG Qian LI Bao +2 位作者 GUO Yi-ming LIU Xin-hong WANG Tong-hua 《Agricultural Science & Technology》 CAS 2024年第2期13-17,共5页
In order to identify the molecular markers that can be widely used in the breeding of Brassica napus L.varieties with high seed oil content under different genetic backgrounds,we developed a Kompetitive Allele Specifi... In order to identify the molecular markers that can be widely used in the breeding of Brassica napus L.varieties with high seed oil content under different genetic backgrounds,we developed a Kompetitive Allele Specific PCR(KASP)marker for seed oil content on the basis of the results from available studies.The verification in the F_(2) population showed that the marker was closely linked to the quantitative trait locus(QTL)for oil content on chromosome A05.The findings helped to breed the‘Fengyou’varieties with high seed oil content in the middle reaches of the Yangtze River. 展开更多
关键词 brassica napus L. Seed oil content Kompetitive Allele Specific PCR(KASP)marker
下载PDF
重金属污染土壤的植物修复研究 Ⅲ.金属富集植物Brassica juncea对锌镉的吸收和积累 被引量:79
16
作者 蒋先军 骆永明 赵其国 《土壤学报》 CAS CSCD 北大核心 2002年第5期664-670,共7页
采用温室盆栽试验研究了印度芥菜对土壤中锌镉污染的忍耐、积累能力 ,以检验这种植物修复Zn、Cd污染土壤的可能性及其潜力。在加入Zn 5 0 0和 1 0 0 0mgkg- 1 的土壤中 ,印度芥菜生长 66天后 ,叶片中积累Zn的平均浓度分别达 2 80和 662m... 采用温室盆栽试验研究了印度芥菜对土壤中锌镉污染的忍耐、积累能力 ,以检验这种植物修复Zn、Cd污染土壤的可能性及其潜力。在加入Zn 5 0 0和 1 0 0 0mgkg- 1 的土壤中 ,印度芥菜生长 66天后 ,叶片中积累Zn的平均浓度分别达 2 80和 662mgkg- 1 ,地上部带走的Zn分别为每盆 2 1 95和 341 2 μg。在加入Cd 2 0 0mgkg- 1 的土壤中生长的印度芥菜 ,叶片中积累Cd浓度为 1 61mgkg- 1 ,地上部带走的Cd为每盆 381 μg。和普通植物相比 ,印度芥菜更能将Zn和Cd从根运输到地上部。Zn 5 0 0mgkg- 1 处理的土壤在种植印度芥菜后其NH4NO3提取的Zn显著高于不种植物的处理 ;土壤添加Cd 2 0 0mgkg- 1 的处理NH4NO3提取的Cd也显著高于不种植物的处理 ,可能的原因是植物根分泌出特殊的分泌物 ,专一性地螯合溶解根系附近的难溶态Zn和Cd,从而提高土壤溶液中的浓度。印度芥菜对Zn、Cd有较强的忍耐和富集能力 ,是Zn、Cd污染土壤修复有潜力的植物。 展开更多
关键词 重金属污染土壤 植物修复 金属富集植物 brassica JUNCEA 吸收 积累 印度芥菜
下载PDF
甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析 被引量:16
17
作者 戚存扣 盖钧镒 +4 位作者 傅寿仲 浦惠明 张洁夫 陈新军 高建琴 《作物学报》 CAS CSCD 北大核心 2004年第12期1274-1277,共4页
通过遗传差异较大的 2个甘蓝型油菜 (BrassicanapusL )纯系亲本组合 (HSTC14×宁油 7号 )衍生后代的世代家系群体分析 ,应用主基因 +多基因家系世代联合分离分析方法研究油菜千粒重的遗传体系。结果表明 ,甘蓝型油菜HSTC14×宁... 通过遗传差异较大的 2个甘蓝型油菜 (BrassicanapusL )纯系亲本组合 (HSTC14×宁油 7号 )衍生后代的世代家系群体分析 ,应用主基因 +多基因家系世代联合分离分析方法研究油菜千粒重的遗传体系。结果表明 ,甘蓝型油菜HSTC14×宁油 7号组合千粒重遗传体系系由一对主基因 +多基因构成 ,主基因中只有加性效应 (d =0 10 6 2 ) ,不存在显性效应 ;多基因存在加性 ([d]=0 2 2 2 8)和显性效应 ,但显性效应为负值 ([h]=- 0 2 80 0 )。表明该组合千粒重主要由主基因加性效应和多基因效应决定 ,但无杂种优势。F2∶3家系群体主基因遗传力为 83 39% ,多基因遗传力为 11 71%。HSTC14×宁油 7号组合千粒重的改良可能受主基因无显性效应 ,多基因显性效应为负值的制约。 展开更多
关键词 brassica NAPUS L. 千粒重 遗传体系 主基因+多基因
下载PDF
芸芥(Eruca sativa Mill.)与芸薹属(Brassica L.)3个油用种的远缘杂交 被引量:35
18
作者 孙万仓 官春云 +8 位作者 孟亚雄 刘自刚 张涛 李栒 杨随庄 令利军 陈社元 曾秀存 王鹤龄 《作物学报》 CAS CSCD 北大核心 2005年第1期36-42,共7页
采用芸芥 (ErucasativaMill.)与芸薹属 3个油用种 (Brassicanapus,Brassicajuncea ,Brassicarapa)进行杂交 ,共授粉15 990朵花 ,获得 12 5 7个角果 ,711粒杂交种子 ,结角率为 7.86 % ,亲和指数 0 .0 4 5。经形态学鉴定 ,无论芸芥作母本... 采用芸芥 (ErucasativaMill.)与芸薹属 3个油用种 (Brassicanapus,Brassicajuncea ,Brassicarapa)进行杂交 ,共授粉15 990朵花 ,获得 12 5 7个角果 ,711粒杂交种子 ,结角率为 7.86 % ,亲和指数 0 .0 4 5。经形态学鉴定 ,无论芸芥作母本还是芸薹属的 3个油用种作母本 ,F1 植株均为偏母植株。杂交所获得角果的角粒数很低 ,许多角果为空角果 ,但在多数角果中可见到许多败育胚的残迹 ,这些败育胚中可能不乏杂种胚。对角果生长发育测量结果表明 ,远缘杂交角果在授粉后 9d左右停止生长 ,据此推断杂种胚的败育时期可能就在授粉后 9d左右。采用苯胺蓝染色法 ,在荧光显微镜下对芸芥与甘蓝型油菜杂交时花粉在柱头上的黏合、萌发及萌发花粉管在柱头和花柱中的生长、伸长情况的观察结果表明 ,异源花粉很难在柱头上黏合和萌发 ,同时在花粉黏合的部位及其附近柱头乳突细胞内产生大量胼胝质 ;萌发的少量花粉粒 ,其花粉管进入柱头也比较困难。表明芸芥与芸薹属杂交 ,存在严重的生殖隔离障碍 ,而且主要是受精前障碍。 展开更多
关键词 芸芥 芸薹属 远缘杂交
下载PDF
建立青菜(Brassica chinensis)农杆菌介导法基因转化体系 被引量:25
19
作者 蔡小宁 佘建明 +3 位作者 朱祯 朱卫民 袁希汉 苏小俊 《江苏农业学报》 CSCD 北大核心 1997年第2期110-114,共5页
以青菜地方品种矮脚黄、苏州青的子叶、子叶柄、真叶为外植体,在改良MS培养基上离体培养获得再生植株。在不定芽诱导培养基中添加2~20mg/LAgNO3可显著提高子叶不定芽诱导频率;添加0.1mg/LNAA和1~2mg/... 以青菜地方品种矮脚黄、苏州青的子叶、子叶柄、真叶为外植体,在改良MS培养基上离体培养获得再生植株。在不定芽诱导培养基中添加2~20mg/LAgNO3可显著提高子叶不定芽诱导频率;添加0.1mg/LNAA和1~2mg/LCPPU既可提高不定芽诱导频率,又可获得较多数量的不定芽。用含CpTI基因和NPTII基因的农杆菌感染子叶,获得了具有卡那霉素抗性的再生植株。培养基中添加羧苄青霉素促进子叶再生不定芽,头孢霉素和卡那霉素则抑制子叶再生。卡那霉素敏感性测定结果表明,当培养基中含卡那霉素10mg/L时。 展开更多
关键词 青菜 子叶 农杆菌介导法 基因转化体系 再生植株
下载PDF
Effect of Chemical Gametocide EXP on Membrane Lipid Peroxidation and Protective Enzyme Activity in Rapeseed (Brassica napus) 被引量:13
20
作者 胡文智 程科 +2 位作者 严静 李昌珍 于澄宇 《Agricultural Science & Technology》 CAS 2008年第4期18-20,33,共4页
[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametoci... [Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametocides.[Method] The activity of peroxidase,catalase and the content of hydrogen peroxide,malondialdehyde in leaves and flower buds of Brassica napus cultivars Qinyou No.3 and L89 induced by the chemical gametocide EXP in the course of male sterility were studied.[Result] Protective enzyme activity and the content of hydrogen peroxide,malondialdehyde in rapeseed treated with EXP changed significantly,which indicated that active oxygen metabolism was abnormal.Furthermore,there was a significant difference in the reaction degree of different cultivars and organs treated by EXP.[Conclusion] There was a correlation between the disturbance of active oxygen metabolism and the male sterility induced by chemical gametocide EXP. 展开更多
关键词 brassica NAPUS CHEMICAL gametocide PEROXIDASE CATALASE Hydrogen PEROXIDE MALONDIALDEHYDE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部