A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)centr...A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat...In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (E...Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3pAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3pAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol.s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG- H2O reversed micelle solutions, 3pAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3pAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3pAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As'- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3pAQ* from VC.展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorde...A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.展开更多
AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 1...AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter(mm), flow direction, mean flow velocity(cm/s), and mean flow volume(m L/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow(FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo(range, 0.3-156.5 mo).RESULTS: Twenty-four patients(10.8%) demonstrated NFPF, accompanied by lower albumin level, worse ChildPugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk;presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels(diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 m L/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF(72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow(84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications.CONCLUSION: NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management.展开更多
Ce0.6Zr0.4O2 solid solution ultrafine particle was prepared in the cyclohexane/water/OP-10/n-hexanol reversed microemulsion. The quasi-ternary phase diagram investigations showed that the system has narrow W/O type mi...Ce0.6Zr0.4O2 solid solution ultrafine particle was prepared in the cyclohexane/water/OP-10/n-hexanol reversed microemulsion. The quasi-ternary phase diagram investigations showed that the system has narrow W/O type microemulison region, so it is the proper system to prepare Ce0.6Zr0.4O2 solid solution ultrafine particle. Some physical-chemical techniques such as TG/DTA, XRD, BET, and HRTEM are used to characterize the resultant powders. The results show that the fluorite cubic Ce0.6Zr0.4O2 solid solution is obtained at 400 ℃. The surface area is (146.7 m^2·g^-1), which is higher than the surface area for sol-gel prepared sample (59.5m^2·g^-1). HRTEM images indicated that the Ce0.6Zr0.4O2 solid solution ultrafine particle is well-crystallized, narrow size distribution, less agglomeration, within mean size of 5 -7 nm.展开更多
Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD,...Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD, BET, SEM, HRTEM, TPR and CO oxidation measurements. The results show that in the range of x = 0.4 - 0.5 and x = 0.6 - 1.0, the solid solutions posses the cubic and the tetragonal phase structure, respectively, Solids obtained by the reversed microemulsion method were more homogeneous on the whole range of composition, XRD investigations of the prepared materials did not show segregation of cerium or zirconium oxides, Highly uniform nanosize solid solution particles of ceria-zirconia with high specific area (146.7 m^2·g^-1) were attained under the conditions of this study. The TPR results and CO oxidation measurements indicate that the performance of the CeO2-ZrO2 mixed oxides is strongly related to the composition and structure of the oxides. Enhancement of the activity was found for the catalyst prepared by reversed microemulsion method as compared to the sample prepared by sol-gel method.展开更多
The activity of lignin peroxidase (LiP) in reversed micelles of polyoxyethylene lauryl ether (Brij30) changed with the molar ratio of water to the surfactant and the denaturant concentration of guanidinium chloride. A...The activity of lignin peroxidase (LiP) in reversed micelles of polyoxyethylene lauryl ether (Brij30) changed with the molar ratio of water to the surfactant and the denaturant concentration of guanidinium chloride. At low water contents the activity of LiP could be enhanced by the denaturant at moderate concentration. This phenomenon, together with the spectral characteristics of the intrinsic fluorescence of LiP, suggested that the conformation of the active center of LiP was flexible.展开更多
A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlo...A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.展开更多
Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistica...Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistically analyzed from 1949 to 2011 over the western North Pacific Ocean. The typical large-scale circulation patterns of SRTCs are investigated using reanalysis data and dynamical composite analysis. Results show that turnings mainly occur in low latitudes between 10°N and 20°N,and mainly west of 135°E. The majority of SRTCs reach their peak intensity at, or slightly before, the turning time and subsequently decrease at some variable rate. Specifically, SRTCs are divided into four types, each containing two groups(i.e.eight groups in total) in terms of the moving-direction changes. The moving speed of all SRTC types except the south–north type decreases to its lowest during the 24 h, corresponding to a significant reduction in the primary steering components.According to the analysis of the 13 typical flow patterns found in this study, we suggest that sudden track changes are caused by the reversal steering flow. The original balance of the background flow patterns are broken up by new systems, e.g. binary TCs or dispersion-induced anticyclones. Additionally, sudden track changes are often due to double ridge variations of the subtropical high or weakened/strengthened high pressure in the east and west, respectively.展开更多
In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-este...In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.展开更多
Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-crack...A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100000 and 2017YFE0301701)National Natural Science Foundation of China(Nos.12375226,11875255,11635008,11375188 and 11975231)the Fundamental Research Funds for the Central Universities(No.wk34200000022)。
文摘A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 12375226)the National Magnetic Confinement Fusion Program of China(No.2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20903004) and the Science Foundation of the Education Committee of Anhui Province (No.J2010A145). We are grateful to professor Li-min Zhang for his help in transient absorptive spectrum measurement.
文摘Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3pAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3pAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol.s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG- H2O reversed micelle solutions, 3pAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3pAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3pAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As'- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3pAQ* from VC.
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.
文摘AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter(mm), flow direction, mean flow velocity(cm/s), and mean flow volume(m L/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow(FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo(range, 0.3-156.5 mo).RESULTS: Twenty-four patients(10.8%) demonstrated NFPF, accompanied by lower albumin level, worse ChildPugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk;presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels(diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 m L/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF(72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow(84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications.CONCLUSION: NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management.
文摘Ce0.6Zr0.4O2 solid solution ultrafine particle was prepared in the cyclohexane/water/OP-10/n-hexanol reversed microemulsion. The quasi-ternary phase diagram investigations showed that the system has narrow W/O type microemulison region, so it is the proper system to prepare Ce0.6Zr0.4O2 solid solution ultrafine particle. Some physical-chemical techniques such as TG/DTA, XRD, BET, and HRTEM are used to characterize the resultant powders. The results show that the fluorite cubic Ce0.6Zr0.4O2 solid solution is obtained at 400 ℃. The surface area is (146.7 m^2·g^-1), which is higher than the surface area for sol-gel prepared sample (59.5m^2·g^-1). HRTEM images indicated that the Ce0.6Zr0.4O2 solid solution ultrafine particle is well-crystallized, narrow size distribution, less agglomeration, within mean size of 5 -7 nm.
文摘Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD, BET, SEM, HRTEM, TPR and CO oxidation measurements. The results show that in the range of x = 0.4 - 0.5 and x = 0.6 - 1.0, the solid solutions posses the cubic and the tetragonal phase structure, respectively, Solids obtained by the reversed microemulsion method were more homogeneous on the whole range of composition, XRD investigations of the prepared materials did not show segregation of cerium or zirconium oxides, Highly uniform nanosize solid solution particles of ceria-zirconia with high specific area (146.7 m^2·g^-1) were attained under the conditions of this study. The TPR results and CO oxidation measurements indicate that the performance of the CeO2-ZrO2 mixed oxides is strongly related to the composition and structure of the oxides. Enhancement of the activity was found for the catalyst prepared by reversed microemulsion method as compared to the sample prepared by sol-gel method.
基金support from the National Natural Science Foundation of China(No.30470048)the Interdisciplinary Foundation of Shandong University
文摘The activity of lignin peroxidase (LiP) in reversed micelles of polyoxyethylene lauryl ether (Brij30) changed with the molar ratio of water to the surfactant and the denaturant concentration of guanidinium chloride. At low water contents the activity of LiP could be enhanced by the denaturant at moderate concentration. This phenomenon, together with the spectral characteristics of the intrinsic fluorescence of LiP, suggested that the conformation of the active center of LiP was flexible.
文摘A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41230421, 41005029 and 41105065)the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201106004)
文摘Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistically analyzed from 1949 to 2011 over the western North Pacific Ocean. The typical large-scale circulation patterns of SRTCs are investigated using reanalysis data and dynamical composite analysis. Results show that turnings mainly occur in low latitudes between 10°N and 20°N,and mainly west of 135°E. The majority of SRTCs reach their peak intensity at, or slightly before, the turning time and subsequently decrease at some variable rate. Specifically, SRTCs are divided into four types, each containing two groups(i.e.eight groups in total) in terms of the moving-direction changes. The moving speed of all SRTC types except the south–north type decreases to its lowest during the 24 h, corresponding to a significant reduction in the primary steering components.According to the analysis of the 13 typical flow patterns found in this study, we suggest that sudden track changes are caused by the reversal steering flow. The original balance of the background flow patterns are broken up by new systems, e.g. binary TCs or dispersion-induced anticyclones. Additionally, sudden track changes are often due to double ridge variations of the subtropical high or weakened/strengthened high pressure in the east and west, respectively.
文摘In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0203000)the State Key Program of the National Natural Science Foundation of China(Grant No.11834008)+3 种基金the National Natural Science Foundation of China(Grant No.11774167)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201809)the Science Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the Natural Science Fund for AQSIQ Technology Research and Development Program,China(Grant No.2017QK125).
文摘A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.