In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heter...Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heterogeneity across territorial spaces.As a super megacity in western China,Chengdu’s rapid urbanization has driven the evolution of U-S-R spaces,resulting in a sequential structure.To promote the high-quality spatial development of urban-rural region in a structured and efficient manner,it is essential to con-duct a scientific examination of the multidimensional interconnection within the U-S-RTZ framework.By proposing a novel identifica-tion method of U-S-RTZ and taking Chengdu,China as a case study,grounded in a blender of natural and humanistic factors,this study quantitatively delineated and explored the spatial evolutions of U-S-RTZ and stated the optimization orientation and sustainable devel-opment strategies of the production-living-ecological spaces along the U-S-R gradients.The results show that:1)it is suitable for the quantitative analysis of U-S-RTZ by established three-dimensional identification system in this study.2)In 1990-2020,the urban-sub-urban transition zones(U-STZ)in Chengdu have continuously undergone a substantial increase,and the scale of the suburban-rural transition zones(S-RTZ)has continued to expand slightly,while the space of rural-ecological transition zones(R-ETZ)has noticeably compressed.3)The landuse dynamics within U-S-RTZ has gradually increased in 1990-2020.The main direction of landuse transition was from farmland to construction land or woodlands,with the expansion of construction land being the most significant.4)R-ETZ primarily focus on ecological functions,and there is a trade-off relationship between the production-ecological function within the S-RTZ,and in the U-STZ,production-living composite functions are prioritized.This study emphasizes the importance of elastic planning and precise governance within the U-S-RTZ in a rapid urbanization region,particularly highlighting the role of suburbs as landscape corridors and service hubs in urban-rural integration.It elucidates to the practical implications for achieving high-quality development of integrated U-S-R territorial spaces.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
Cultivation of pollinator-dependent crops has expanded globally, increasing our reliance on insect pollination. This essential ecosystem service is provided by a wide range of managed and wild pollinators whose abunda...Cultivation of pollinator-dependent crops has expanded globally, increasing our reliance on insect pollination. This essential ecosystem service is provided by a wide range of managed and wild pollinators whose abundance and diversity are thought to be in decline, threatening sustainable food production. In Cameroon, several studies on pollinator-dependent crops carried out in different agro-ecological zones (AEZ) have been published in national and international journals, in order to present the importance and impact of flowering insects on fruit and seed yields of plant species. We proposed to produce a review article highlighting the different flowering insects and their importance for different plants according to AEZ, without however focusing on the quality of the journal (predator or non-predator) and how the different insects were identified (scientific names given in the publications). Thus, from 1997 to 2020, we collected 116 published papers from which only 26 were kept for this review. The results show that Hymenoptera, including the Apidae, followed by Megachilidae, are the most excellent pollinators of plant species in Cameroon, and they are present in different agro-ecological zones. The majority of publications focused on bees, particularly the honeybee Apis mellifera.展开更多
Background: Cardiovascular diseases such as hypertension (HTN) are one of the main causes of death in Cameroon. This study aimed at assessing prevalence disparities and determinants of hypertension amongst Bamilé...Background: Cardiovascular diseases such as hypertension (HTN) are one of the main causes of death in Cameroon. This study aimed at assessing prevalence disparities and determinants of hypertension amongst Bamiléké adults residing in two different agroecological zones of Cameroon. Methods: A cross-sectional and descriptive survey was conducted among Bamiléké population living in the Highlands zone (Western region) and in the Monomodal Rainforest zone (Littoral region) of Cameroon from August 2016 to August 2017. Participants (962) were aged at least 20 years old. Data on sociodemographic, hemodynamic, anthropometric, and biochemical parameters and lifestyle of the participants were collected. Results: Results obtained revealed that 34.2% were hypertensive and those residing in the highland zone were more affected than those living in the monomodal rainforest zone (44.5% vs 22.9%). The different subtypes of HTN (Isolated systolic hypertension (14.1%), isolated diastolic hypertension (7.2%) and Systo-diastolic hypertension (23.3%)) were also more prevalent in the Highlands Zone. The most prevalent stage of HTN was pre-HTN (31.5%). However, people living in the monomodal rainforest zone were more affected by pre-HTN compared to Bamiléké living in the highland zone (33.6% vs. 29.6%). Results also showed that high consumption (≥ 3 times/week) of carbohydrate- and fat-rich foods, ageing, obesity, and marital status were associated with high blood pressure in both agroecological zones. Besides, secondary education (OR = 0.68;95% CI: 0.42 - 0.99) in the Highlands Zone and high (≥3 times/week) vegetable consumption (OR = 0.66;95% CI: 0.44 - 0.98) in the Monomodal Rainforest Zone had a protective effect on elevated blood pressure of population. Conclusion: There is a disparity in the prevalence of hypertension and some of its determinants among Bamiléké adults residing in different agroecological zones. This work highlights the need to advocate for local and ethno-cultural health policies to prevent, diagnose and manage hypertension.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and disco...Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and discontinuities are created or propagate in the rock mass.Therefore,it is effective to measure and evaluate the acoustic emission(AE)events generated by the rocks,which is a small elastic vibration,and permeability change.The authors have developed a long-term measurement device that incorporates an optical AE(O-AE)sensor,an optical pore pressure sensor,and an optical temperature sensor in a single multi-optical measurement probe(MOP).Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste(HLW)deep geological disposal technology.In a high-level radioactive disposal project,one of the challenges is the development of methods for long-term monitoring of rock mass behavior.Therefore,in January 2014,the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center.The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation.In addition,hydraulic conductivity increased by 2e4 orders of magnitude.Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures.Based on this,a conceptual model is developed to represent the excavation damaged zone(EDZ),which contributes to the safe geological disposal of radioactive waste.展开更多
A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon...A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.展开更多
In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two t...In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.展开更多
Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demo...Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demonstrative effect nationwide.The basic experience from a decade of FTZs includes:adhering to the centralized and unified leadership of the CPC Central Committee;combining top-level design with encouragement of grassroots innovation;leveraging the distinct characteristics and strengths of FTZs to form a differentiated development pattern;maintaining the integration of opening up with domestic reforms;using openness to drive reforms;and organically combining openness with national security assurance.Under the current and future new circumstances,China’s FTZs face new challenges and tasks.In accordance with the directives of the 20th National Congress of the Communist Party of China,an enhancement strategy for the FTZs needs to be implemented.This involves the following:First,accurately understanding and responding to the changing situation to create strategic opportunities.Second,shifting paradigms to implement innovation-driven strategies,using the new development pattern concept to guide the reform experiments and construction of the FTZs.Third,granting more autonomy to FTZs for reforms,pursuing progress while maintaining stability,and solidly advancing the reform experiments in the FTZs.Fourth,orderly expanding the opening up of the service sector and cautiously advancing the internationalization of the renminbi.Fifth,promoting innovative development in trade to build a strong trade nation.Sixth,establishing synergy with bilateral FTZs,Belt and Road cooperation,and national diplomatic strategies to enhance the linkage effect.展开更多
China's local colleges and universities are the main force of China's higher education.Due to the limited construction funds,weak discipline foundation and other reasons,China's local colleges and universi...China's local colleges and universities are the main force of China's higher education.Due to the limited construction funds,weak discipline foundation and other reasons,China's local colleges and universities generally face the embarrassment of weak discipline.How to break the constraints of the traditional management system,concentrate and efficiently allocate limited resources to achieve the overall improvement of the discipline construction level,the successful experience of China's special economic zones provides model reference and construction guidance for Chinese local universities.This study takes the subject special zones of local universities in China as the research object,chooses the theoretical system of economics and institutional theory as the logical starting point of the research,constructs the research framework of three dimensions of idea value,system design and action strategy,takes the reform of special economic zones as the institutional model and practice reference,and carries out the research from five dimensions of reform subject,logic,path,idea and strategy.Explore the effective development path of the rise of discipline construction.展开更多
Since the 18th National Congress of the Communist Party of China held in 2012,the construction of pilot free trade zone has emerged as a strategically important approach for China’s reform and opening up efforts.Thes...Since the 18th National Congress of the Communist Party of China held in 2012,the construction of pilot free trade zone has emerged as a strategically important approach for China’s reform and opening up efforts.These zones exemplify China’s proactive and open strategy,serving as a key driver for promoting high-quality development.In September 2013,China launched its first pilot free trade zone,China(Shanghai)Pilot Free Trade Zone.Over the past decade,21 additional pilot free trade zones have been established across the country.This expansion has created a comprehensive reform and opening up innovation agenda that spans the eastern,western,southern,northern,and central regions,while integrating coastal,inland,and border areas.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-E...Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-EOR and storage perfor-mance in ROZs for Water-Alternating-CO_(2)(WAG)flooding,a multi-compositional CO_(2) miscible model with molecular diffusion was developed.The effects of formation parameters(porosity,permeability,temperature),operation parameters(bottom hole pressure,WAG ratio,pore volume of injected water),and diffusion coeffcient on the coupled CO_(2)-EOR and storage were investigated.Five points from the CO_(2) sequestration curve and the oil recovery factor curve were selected to help better analyze coupled CO_(2)-EOR and storage.The results demonstrate that enhanced performance is observed when formation permeability is higher and a larger volume of water is injected.On the other hand,the performance diminishes with increasing porosity,molecular diffusion of gas,and the WAG ratio.When the temperature is around 100℃,coupled CO_(2)-EOR and storage performance is the worst.To achieve optimal miscible flooding,it is recommended to maintain the bottom hole pressure(BHP)of the injection well above 1.2 minimum miscibility pressure(MMP),while ensuring that the BHP of the production well remains sufficiently high.Furthermore,the tapered WAG flooding strategy proves to be profitable for enhanced oil recovery,as compared to a WAG ratio of 0.5:1,although it may not be as effective for CO_(2) sequestration.展开更多
Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it h...Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs.展开更多
The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,com...The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.展开更多
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:...The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金Under the auspices of National Natural Science Foundation of China(No.41930651)Sichuan Science and Technology Program(No.2023NSFSC1979)。
文摘Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heterogeneity across territorial spaces.As a super megacity in western China,Chengdu’s rapid urbanization has driven the evolution of U-S-R spaces,resulting in a sequential structure.To promote the high-quality spatial development of urban-rural region in a structured and efficient manner,it is essential to con-duct a scientific examination of the multidimensional interconnection within the U-S-RTZ framework.By proposing a novel identifica-tion method of U-S-RTZ and taking Chengdu,China as a case study,grounded in a blender of natural and humanistic factors,this study quantitatively delineated and explored the spatial evolutions of U-S-RTZ and stated the optimization orientation and sustainable devel-opment strategies of the production-living-ecological spaces along the U-S-R gradients.The results show that:1)it is suitable for the quantitative analysis of U-S-RTZ by established three-dimensional identification system in this study.2)In 1990-2020,the urban-sub-urban transition zones(U-STZ)in Chengdu have continuously undergone a substantial increase,and the scale of the suburban-rural transition zones(S-RTZ)has continued to expand slightly,while the space of rural-ecological transition zones(R-ETZ)has noticeably compressed.3)The landuse dynamics within U-S-RTZ has gradually increased in 1990-2020.The main direction of landuse transition was from farmland to construction land or woodlands,with the expansion of construction land being the most significant.4)R-ETZ primarily focus on ecological functions,and there is a trade-off relationship between the production-ecological function within the S-RTZ,and in the U-STZ,production-living composite functions are prioritized.This study emphasizes the importance of elastic planning and precise governance within the U-S-RTZ in a rapid urbanization region,particularly highlighting the role of suburbs as landscape corridors and service hubs in urban-rural integration.It elucidates to the practical implications for achieving high-quality development of integrated U-S-R territorial spaces.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
文摘Cultivation of pollinator-dependent crops has expanded globally, increasing our reliance on insect pollination. This essential ecosystem service is provided by a wide range of managed and wild pollinators whose abundance and diversity are thought to be in decline, threatening sustainable food production. In Cameroon, several studies on pollinator-dependent crops carried out in different agro-ecological zones (AEZ) have been published in national and international journals, in order to present the importance and impact of flowering insects on fruit and seed yields of plant species. We proposed to produce a review article highlighting the different flowering insects and their importance for different plants according to AEZ, without however focusing on the quality of the journal (predator or non-predator) and how the different insects were identified (scientific names given in the publications). Thus, from 1997 to 2020, we collected 116 published papers from which only 26 were kept for this review. The results show that Hymenoptera, including the Apidae, followed by Megachilidae, are the most excellent pollinators of plant species in Cameroon, and they are present in different agro-ecological zones. The majority of publications focused on bees, particularly the honeybee Apis mellifera.
文摘Background: Cardiovascular diseases such as hypertension (HTN) are one of the main causes of death in Cameroon. This study aimed at assessing prevalence disparities and determinants of hypertension amongst Bamiléké adults residing in two different agroecological zones of Cameroon. Methods: A cross-sectional and descriptive survey was conducted among Bamiléké population living in the Highlands zone (Western region) and in the Monomodal Rainforest zone (Littoral region) of Cameroon from August 2016 to August 2017. Participants (962) were aged at least 20 years old. Data on sociodemographic, hemodynamic, anthropometric, and biochemical parameters and lifestyle of the participants were collected. Results: Results obtained revealed that 34.2% were hypertensive and those residing in the highland zone were more affected than those living in the monomodal rainforest zone (44.5% vs 22.9%). The different subtypes of HTN (Isolated systolic hypertension (14.1%), isolated diastolic hypertension (7.2%) and Systo-diastolic hypertension (23.3%)) were also more prevalent in the Highlands Zone. The most prevalent stage of HTN was pre-HTN (31.5%). However, people living in the monomodal rainforest zone were more affected by pre-HTN compared to Bamiléké living in the highland zone (33.6% vs. 29.6%). Results also showed that high consumption (≥ 3 times/week) of carbohydrate- and fat-rich foods, ageing, obesity, and marital status were associated with high blood pressure in both agroecological zones. Besides, secondary education (OR = 0.68;95% CI: 0.42 - 0.99) in the Highlands Zone and high (≥3 times/week) vegetable consumption (OR = 0.66;95% CI: 0.44 - 0.98) in the Monomodal Rainforest Zone had a protective effect on elevated blood pressure of population. Conclusion: There is a disparity in the prevalence of hypertension and some of its determinants among Bamiléké adults residing in different agroecological zones. This work highlights the need to advocate for local and ethno-cultural health policies to prevent, diagnose and manage hypertension.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
文摘Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and discontinuities are created or propagate in the rock mass.Therefore,it is effective to measure and evaluate the acoustic emission(AE)events generated by the rocks,which is a small elastic vibration,and permeability change.The authors have developed a long-term measurement device that incorporates an optical AE(O-AE)sensor,an optical pore pressure sensor,and an optical temperature sensor in a single multi-optical measurement probe(MOP).Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste(HLW)deep geological disposal technology.In a high-level radioactive disposal project,one of the challenges is the development of methods for long-term monitoring of rock mass behavior.Therefore,in January 2014,the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center.The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation.In addition,hydraulic conductivity increased by 2e4 orders of magnitude.Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures.Based on this,a conceptual model is developed to represent the excavation damaged zone(EDZ),which contributes to the safe geological disposal of radioactive waste.
基金Supported by the National Natural Science Foundation of China(Nos.42302155,42072169,42072235)the Natural Science Foundation of Shandong Province(No.ZR2023QD016)+2 种基金the China Postdoctoral Science Foundation(No.2022M713461)the Qingdao Postdoctoral Application Research Funds(No.QDBSH20220202067)the Fundamental Research Funds for the Central Universities(No.22CX06005A)。
文摘A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.
文摘In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.
文摘Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demonstrative effect nationwide.The basic experience from a decade of FTZs includes:adhering to the centralized and unified leadership of the CPC Central Committee;combining top-level design with encouragement of grassroots innovation;leveraging the distinct characteristics and strengths of FTZs to form a differentiated development pattern;maintaining the integration of opening up with domestic reforms;using openness to drive reforms;and organically combining openness with national security assurance.Under the current and future new circumstances,China’s FTZs face new challenges and tasks.In accordance with the directives of the 20th National Congress of the Communist Party of China,an enhancement strategy for the FTZs needs to be implemented.This involves the following:First,accurately understanding and responding to the changing situation to create strategic opportunities.Second,shifting paradigms to implement innovation-driven strategies,using the new development pattern concept to guide the reform experiments and construction of the FTZs.Third,granting more autonomy to FTZs for reforms,pursuing progress while maintaining stability,and solidly advancing the reform experiments in the FTZs.Fourth,orderly expanding the opening up of the service sector and cautiously advancing the internationalization of the renminbi.Fifth,promoting innovative development in trade to build a strong trade nation.Sixth,establishing synergy with bilateral FTZs,Belt and Road cooperation,and national diplomatic strategies to enhance the linkage effect.
文摘China's local colleges and universities are the main force of China's higher education.Due to the limited construction funds,weak discipline foundation and other reasons,China's local colleges and universities generally face the embarrassment of weak discipline.How to break the constraints of the traditional management system,concentrate and efficiently allocate limited resources to achieve the overall improvement of the discipline construction level,the successful experience of China's special economic zones provides model reference and construction guidance for Chinese local universities.This study takes the subject special zones of local universities in China as the research object,chooses the theoretical system of economics and institutional theory as the logical starting point of the research,constructs the research framework of three dimensions of idea value,system design and action strategy,takes the reform of special economic zones as the institutional model and practice reference,and carries out the research from five dimensions of reform subject,logic,path,idea and strategy.Explore the effective development path of the rise of discipline construction.
文摘Since the 18th National Congress of the Communist Party of China held in 2012,the construction of pilot free trade zone has emerged as a strategically important approach for China’s reform and opening up efforts.These zones exemplify China’s proactive and open strategy,serving as a key driver for promoting high-quality development.In September 2013,China launched its first pilot free trade zone,China(Shanghai)Pilot Free Trade Zone.Over the past decade,21 additional pilot free trade zones have been established across the country.This expansion has created a comprehensive reform and opening up innovation agenda that spans the eastern,western,southern,northern,and central regions,while integrating coastal,inland,and border areas.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
基金supported by the National Natural Science Foundation of China(52034010).
文摘Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-EOR and storage perfor-mance in ROZs for Water-Alternating-CO_(2)(WAG)flooding,a multi-compositional CO_(2) miscible model with molecular diffusion was developed.The effects of formation parameters(porosity,permeability,temperature),operation parameters(bottom hole pressure,WAG ratio,pore volume of injected water),and diffusion coeffcient on the coupled CO_(2)-EOR and storage were investigated.Five points from the CO_(2) sequestration curve and the oil recovery factor curve were selected to help better analyze coupled CO_(2)-EOR and storage.The results demonstrate that enhanced performance is observed when formation permeability is higher and a larger volume of water is injected.On the other hand,the performance diminishes with increasing porosity,molecular diffusion of gas,and the WAG ratio.When the temperature is around 100℃,coupled CO_(2)-EOR and storage performance is the worst.To achieve optimal miscible flooding,it is recommended to maintain the bottom hole pressure(BHP)of the injection well above 1.2 minimum miscibility pressure(MMP),while ensuring that the BHP of the production well remains sufficiently high.Furthermore,the tapered WAG flooding strategy proves to be profitable for enhanced oil recovery,as compared to a WAG ratio of 0.5:1,although it may not be as effective for CO_(2) sequestration.
基金the support from Science&Technology Department of Sichuan Province(Grant Nos.2021ZYCD004,2022YFSY0008,2022NSFSC1023)National Natural Science Foundation of China(Grant Nos.42102300,52204033)the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University(Grant No.22003).
文摘Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs.
基金support from the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Innovation Team of Changjiang River Scientific Research Institute(Grant Nos.CKSF2021715/YT and CKSF2023305/YT)。
文摘The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金Under the auspices of the National Natural Science Foundation of China(No.41590841)the National Key Research and Development Program of China(No.2016YFC0503000)the Research Funds of the Chinese Academy of Sciences the Chinese Academy of Sciences(CAS)-the World Academy of Sciences(TWAS)President’s Fellowship。
文摘The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.