Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a...Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.展开更多
The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulati...The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La a...The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.展开更多
A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the s...A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable e...Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable experimental and theoretical progress,current experimental studies have mainly focused on the local microstructural characterizations of recovered samples,which has certain limitations for hightemperature and high-pressure products,which often exhibit diversity.Here,we report on the pressure-induced phase transition behavior of natural single-crystal graphite under three distinct pressure-transmitting media from a macroscopic perspective using in situ two-dimensional Raman spectroscopy,scanning electron microscopy,and atomic force microscopy.The surface evolution process of graphite before and after the phase transition is captured,revealing that pressure-induced surface textures can impede the continuity of the phase transition process across the entire single crystal.Our results provide a fresh perspective for studying the phase transition behavior of graphite and greatly deepen our understanding of this behavior,which will be helpful in guiding further high-temperature and high-pressure syntheses of carbon allotropes.展开更多
Objective:This study aimed to examine the developmental trajectories of internalizing behaviors among adolescents and to identify key personal and environmental factors associated with these developmental patterns ove...Objective:This study aimed to examine the developmental trajectories of internalizing behaviors among adolescents and to identify key personal and environmental factors associated with these developmental patterns over time.Methods:Data were collected from 2242 adolescents(49.6%girls,aged 13.9–18.9 years)in South Korea.Latent class growth analysis was used to identify distinct developmental patterns of internalizing behaviors.Multinomial logistic regression analyses were conducted to examine the associations between these developmental patterns and various factors including gender,self-esteem,abuse and neglect experiences,peer relationships,and media use.Results:The analysis revealed three latent classes of internalizing behavior trajectories among adolescents.The first group,the“mid decreasing group”,comprised 54.5%of the sample(1221 students),indicating a moderate level of internalizing behavior that declined over time.The second group,the“high decreasing group”,included 19.1%of the sample(429 students),characterized by initially high levels of internalizing behavior that decreased.The third group,the“low maintained group”,represented 26.4%of the sample(592 students),indicating consistently low levels of internalizing behavior.Factors such as gender,self-esteem,experiences of abuse and neglect,peer relationships(trust and alienation),smartphone dependency,and time spent watching TV/videos were significantly associated with these latent groups.Conclusion:Three distinct developmental patterns of internalizing behaviors were identified among adolescents:mid-decreasing(54.5%),high-decreasing(19.1%),and low-maintained(26.4%).Gender,self-esteem,abuse experiences,and peer relationships were significant predictors of these developmental patterns.展开更多
Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the str...Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the strata but also by the anisotropy of the layered rock mass. The interaction between them can lead to critical structural failure, such as rupture, collapse, or significant deformation within the adjacent rock mass, thereby jeopardizing operational safety. However, the coupling law and mechanism between the stress concentration resulting from the cavities and the anisotropy of a layered rock mass remain unclear. In this study, a uniaxial compression test was performed on shale specimens containing a circular hole to investigate the effects of layer inclination and circular holes on the mechanical properties, elastic energy storage, and failure behaviors of these specimens. The failure mechanism of the rock surrounding the hole was analyzed on the basis of the single plane of weakness theory and the Kirsch solution. The test results indicated pronounced anisotropy in the compressive strength, elastic modulus, and elastic strain energy of the specimens, with distinct “V”, “M” and “U”-shaped patterns correlated with varying layer inclination angles. In addition, the combined effect of stress concentration and layer inclination resulted in different failure types, which were classified into four groups according to their failure behavior. Theoretical analysis revealed that failure around circular holes in layered rock is affected by a range of variables, such as layer inclination, layer strength, lateral pressure coefficient, azimuth, and loading stress.展开更多
BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,b...BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.展开更多
BACKGROUND Work-family conflicts and daytime sleepiness are related to the risk of suicide.At present,no study has investigated the relationship between nurses’work-family behavioral role conflict and suicide risk.Mo...BACKGROUND Work-family conflicts and daytime sleepiness are related to the risk of suicide.At present,no study has investigated the relationship between nurses’work-family behavioral role conflict and suicide risk.Moreover,it has not been confirmed whether,considering the effect of daytime sleepiness on suicide risk,daytime sleepiness mediates the effect of work-family behavioral role conflict and suicide risk.AIM To explore the pathway relationships among nurses'work-family behavioral role conflict,daytime sleepiness,and suicide risk.METHODS Convenience and purposive sampling methods were used to select 750 nurses from six provinces,including Jiangxi,Sichuan,and Shanxi.The work-family behavioral role conflict scale,the Chinese adult daytime sleepiness scale,and the suicide behavior questionnaire were used for the survey.The data were statistically analyzed via SPSS 25.0 software,Pearson correlation analysis was used to explore the correlations between the variables,the PROCESS 4.0 program was used for the mediation effect analysis,and the mediation effect model was tested via the bootstrap method.RESULTS Nurses'work-family behavioral role conflict and daytime sleepiness were positively correlated with suicide risk(r=734,0.717).Work-family behavioral role conflict positively predicted suicide risk(β=0.118),and daytime sleepiness positively predicted suicide risk(β=0.152).Daytime sleepiness partially mediated the role of nurses'work-family behavioral role conflict and suicide risk,with a mediation effect value of 0.046 and a mediation effect accounting for 38.98%.CONCLUSION The results of the Pearson correlation analysis and mediation effect analysis revealed that nurses'work-family behavioral role conflict has a direct effect on suicide risk and indirectly affects suicide risk through daytime drowsiness symptoms.展开更多
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste...Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.展开更多
Orthodontic osteodilated arch treatment represents a pivotal approach in dental orthodontics to address dental crowding and misalignment.Integrating cognitive behavioral therapy(CBT)into comprehensive nursing interven...Orthodontic osteodilated arch treatment represents a pivotal approach in dental orthodontics to address dental crowding and misalignment.Integrating cognitive behavioral therapy(CBT)into comprehensive nursing interventions(CNI)aims to address these issues holistically.This editorial explores the effectiveness of CBTbased CNI in improving patient outcomes in orthodontic care.Innovations in remote CBT delivery,such as virtual reality,have also shown potential in reducing pain,anxiety,and depression,emphasizing CBT's adaptability in orthodontic settings.The findings underscore the importance of integrating psychological support into orthodontic care to enhance patient adherence,satisfaction,and overall treatment success.The editorial advocates for a holistic approach that combines psychological and physiological care,highlighting the transformative potential of CBT-based interventions in orthodontic treatment.展开更多
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en...Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.展开更多
In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing pr...In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.展开更多
Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties an...Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.展开更多
An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type ...An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.展开更多
Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak a...Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak and suppressed valley exist in the curves of the SNR versus the coefficient of self-saturation, the net gain and thecross-coupling coefficient of the laser system.展开更多
In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intri...In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.展开更多
基金supported by ANID Fondecyt Iniciacion 11180540(to FJB)ANID PAI 77180077(to FJB)+2 种基金UNAB DI-02-22/REG(to FJB)Exploración-ANID 13220203(to FJB)ANID-MILENIO(NCN2023_23,to FJB)。
文摘Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.
基金financial support from the National Natural Science Foundation of China(Nos.52233018 and 51831002)the China Baowu Low Carbon Metallurgy Innovation Foudation(No.BWLCF202213)。
文摘The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金financially supported by the National Key R &D Program of China (No.2022YFB3709300)。
文摘The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309300, National Natural Science Foundation of China under Grant No. 10204020, and the Innovation Funds of the Chinese Academy of Sciences
文摘A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
基金support from the National Science Fund for Distinguished Young Scholars(Grant No.T2225027)the NSAF(Grant No.U1930401)+1 种基金the National Key R&D Program of China(MOST)(Grant No.2023YFA1406500)the National Natural Science Foundation of China(NSFC)(Grant No.61674045).
文摘Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable experimental and theoretical progress,current experimental studies have mainly focused on the local microstructural characterizations of recovered samples,which has certain limitations for hightemperature and high-pressure products,which often exhibit diversity.Here,we report on the pressure-induced phase transition behavior of natural single-crystal graphite under three distinct pressure-transmitting media from a macroscopic perspective using in situ two-dimensional Raman spectroscopy,scanning electron microscopy,and atomic force microscopy.The surface evolution process of graphite before and after the phase transition is captured,revealing that pressure-induced surface textures can impede the continuity of the phase transition process across the entire single crystal.Our results provide a fresh perspective for studying the phase transition behavior of graphite and greatly deepen our understanding of this behavior,which will be helpful in guiding further high-temperature and high-pressure syntheses of carbon allotropes.
文摘Objective:This study aimed to examine the developmental trajectories of internalizing behaviors among adolescents and to identify key personal and environmental factors associated with these developmental patterns over time.Methods:Data were collected from 2242 adolescents(49.6%girls,aged 13.9–18.9 years)in South Korea.Latent class growth analysis was used to identify distinct developmental patterns of internalizing behaviors.Multinomial logistic regression analyses were conducted to examine the associations between these developmental patterns and various factors including gender,self-esteem,abuse and neglect experiences,peer relationships,and media use.Results:The analysis revealed three latent classes of internalizing behavior trajectories among adolescents.The first group,the“mid decreasing group”,comprised 54.5%of the sample(1221 students),indicating a moderate level of internalizing behavior that declined over time.The second group,the“high decreasing group”,included 19.1%of the sample(429 students),characterized by initially high levels of internalizing behavior that decreased.The third group,the“low maintained group”,represented 26.4%of the sample(592 students),indicating consistently low levels of internalizing behavior.Factors such as gender,self-esteem,experiences of abuse and neglect,peer relationships(trust and alienation),smartphone dependency,and time spent watching TV/videos were significantly associated with these latent groups.Conclusion:Three distinct developmental patterns of internalizing behaviors were identified among adolescents:mid-decreasing(54.5%),high-decreasing(19.1%),and low-maintained(26.4%).Gender,self-esteem,abuse experiences,and peer relationships were significant predictors of these developmental patterns.
基金supported by Beijing Natural Science Foundation of China(Grant No.2244099)the China Postdoctoral Science Foundation(Grant No.2023T0025)the National Natural Science Foundation of China(Grant No.52074020).
文摘Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the strata but also by the anisotropy of the layered rock mass. The interaction between them can lead to critical structural failure, such as rupture, collapse, or significant deformation within the adjacent rock mass, thereby jeopardizing operational safety. However, the coupling law and mechanism between the stress concentration resulting from the cavities and the anisotropy of a layered rock mass remain unclear. In this study, a uniaxial compression test was performed on shale specimens containing a circular hole to investigate the effects of layer inclination and circular holes on the mechanical properties, elastic energy storage, and failure behaviors of these specimens. The failure mechanism of the rock surrounding the hole was analyzed on the basis of the single plane of weakness theory and the Kirsch solution. The test results indicated pronounced anisotropy in the compressive strength, elastic modulus, and elastic strain energy of the specimens, with distinct “V”, “M” and “U”-shaped patterns correlated with varying layer inclination angles. In addition, the combined effect of stress concentration and layer inclination resulted in different failure types, which were classified into four groups according to their failure behavior. Theoretical analysis revealed that failure around circular holes in layered rock is affected by a range of variables, such as layer inclination, layer strength, lateral pressure coefficient, azimuth, and loading stress.
基金Supported by the Natural Science Foundation of Xiaogan,China,No.XGKJ2023010036.
文摘BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.
文摘BACKGROUND Work-family conflicts and daytime sleepiness are related to the risk of suicide.At present,no study has investigated the relationship between nurses’work-family behavioral role conflict and suicide risk.Moreover,it has not been confirmed whether,considering the effect of daytime sleepiness on suicide risk,daytime sleepiness mediates the effect of work-family behavioral role conflict and suicide risk.AIM To explore the pathway relationships among nurses'work-family behavioral role conflict,daytime sleepiness,and suicide risk.METHODS Convenience and purposive sampling methods were used to select 750 nurses from six provinces,including Jiangxi,Sichuan,and Shanxi.The work-family behavioral role conflict scale,the Chinese adult daytime sleepiness scale,and the suicide behavior questionnaire were used for the survey.The data were statistically analyzed via SPSS 25.0 software,Pearson correlation analysis was used to explore the correlations between the variables,the PROCESS 4.0 program was used for the mediation effect analysis,and the mediation effect model was tested via the bootstrap method.RESULTS Nurses'work-family behavioral role conflict and daytime sleepiness were positively correlated with suicide risk(r=734,0.717).Work-family behavioral role conflict positively predicted suicide risk(β=0.118),and daytime sleepiness positively predicted suicide risk(β=0.152).Daytime sleepiness partially mediated the role of nurses'work-family behavioral role conflict and suicide risk,with a mediation effect value of 0.046 and a mediation effect accounting for 38.98%.CONCLUSION The results of the Pearson correlation analysis and mediation effect analysis revealed that nurses'work-family behavioral role conflict has a direct effect on suicide risk and indirectly affects suicide risk through daytime drowsiness symptoms.
基金the support of the National Natural Science Foundation of China(Grant Nos.42030714,42177138 and 41907239).
文摘Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.
基金Basic Science Research Program Through the National Research Foundation of Korea Funded by the Ministry of Education,No.NRF-RS-2023-00237287 and No.NRF-2021S1A5A8062526Local Government-University Cooperation-Based Regional Innovation Projects,No.2021RIS-003.
文摘Orthodontic osteodilated arch treatment represents a pivotal approach in dental orthodontics to address dental crowding and misalignment.Integrating cognitive behavioral therapy(CBT)into comprehensive nursing interventions(CNI)aims to address these issues holistically.This editorial explores the effectiveness of CBTbased CNI in improving patient outcomes in orthodontic care.Innovations in remote CBT delivery,such as virtual reality,have also shown potential in reducing pain,anxiety,and depression,emphasizing CBT's adaptability in orthodontic settings.The findings underscore the importance of integrating psychological support into orthodontic care to enhance patient adherence,satisfaction,and overall treatment success.The editorial advocates for a holistic approach that combines psychological and physiological care,highlighting the transformative potential of CBT-based interventions in orthodontic treatment.
文摘Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results.
文摘In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.
基金The project supported by the Natural Science Foundation of Fujian Province under Grant .No. W0650011 and Funds from Fujian Department of Education under Grant No. JB06041
文摘Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.
基金supported by the National Natural Science Foundation of China (Grant No 10674025)Funds from Key Laboratory of Quantum Information, University of Science and Technology of Chinathe Department Funds of Fuzhou University of China (Grant No 2007-XY-15)
文摘An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.
基金Supported by the National Natural Science Foundation of China under Grant No.10275025 the Natural Science Foundation of Hubei Province of China under Grant No.2005ABA051
文摘Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak and suppressed valley exist in the curves of the SNR versus the coefficient of self-saturation, the net gain and thecross-coupling coefficient of the laser system.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007)
文摘In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.