Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,fo...Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.展开更多
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo...Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R191)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR61)This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.
文摘Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.