Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully autom...Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully automated tissue segmentation system for dental implant surgery.Specifically,we propose an image preprocessing method based on data distribution histograms,which can adaptively process CBCT images with different parameters.Based on this,we use the bone segmentation network to obtain the segmentation results of alveolar bone,teeth,and maxillary sinus.We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks.The tooth segmentation results can obtain the order information of the dentition.The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods.Its average Dice scores on the tooth,alveolar bone,maxillary sinus,and mandibular canal segmentation tasks were 96.5%,95.4%,93.6%,and 94.8%,respectively.These results demonstrate that it can accelerate the development of digital dentistry.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years...Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitud...In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.展开更多
The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with tim...The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.展开更多
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
The Brown-Preston-Singleton(BPS)stopping power model is added to our previously developed hybrid code to model ion beam-plasma interaction.Hybrid simulations show that both resistive field and ion scattering effects a...The Brown-Preston-Singleton(BPS)stopping power model is added to our previously developed hybrid code to model ion beam-plasma interaction.Hybrid simulations show that both resistive field and ion scattering effects are important for proton beam transport in a solid target,in which they compete with each other.When the target is not completely ionized,the self-generated resistive field effect dominates over the ion scattering effect.However,when the target is completely ionized,this situation is reversed.Moreover,it is found that Ohmic heating is important for higher current densities and materials with high resistivity.The energy fraction deposited as Ohmic heating can be as high as 20%-30%.Typical ion divergences with half-angles of about 5°-10°will modify the proton energy deposition substantially and should be taken into account.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pear...We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.展开更多
The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance...The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links.In this paper,based on the mathematical model for characterizing beam wandering,we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering.Our simulation results show that the performance of RFI-QKD is better than the Bennett–Brassard 1984(BB84)QKD with beam wandering in asymptotic case.Furthermore,the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account.Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.展开更多
We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growt...We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.展开更多
The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction te...The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.展开更多
The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been emplo...The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.展开更多
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
基金supported by National Natural Science Foundation of China(No.81970987).
文摘Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully automated tissue segmentation system for dental implant surgery.Specifically,we propose an image preprocessing method based on data distribution histograms,which can adaptively process CBCT images with different parameters.Based on this,we use the bone segmentation network to obtain the segmentation results of alveolar bone,teeth,and maxillary sinus.We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks.The tooth segmentation results can obtain the order information of the dentition.The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods.Its average Dice scores on the tooth,alveolar bone,maxillary sinus,and mandibular canal segmentation tasks were 96.5%,95.4%,93.6%,and 94.8%,respectively.These results demonstrate that it can accelerate the development of digital dentistry.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2206503)National Natural Science Foundation of China(Grant No.62274159)+1 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-056)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB43010102).
文摘Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
文摘In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.
基金supported by the National Key R&D Program of China under grant 2020YFB1804901the National Natural Science Foundation of China under grant 62341102。
文摘The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
基金supported by the National Natural Sci-ence Foundation of China(Grant Nos.12005298,12275356,11774430,U2241281,and 12175309)Research Grant No.PID2022-137339OB-C22 of the Spanish Ministry of Education and Research+1 种基金the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40661 and 2022JJ30656)a research project of the NUDT(Contract No.ZK19-25).
文摘The Brown-Preston-Singleton(BPS)stopping power model is added to our previously developed hybrid code to model ion beam-plasma interaction.Hybrid simulations show that both resistive field and ion scattering effects are important for proton beam transport in a solid target,in which they compete with each other.When the target is not completely ionized,the self-generated resistive field effect dominates over the ion scattering effect.However,when the target is completely ionized,this situation is reversed.Moreover,it is found that Ohmic heating is important for higher current densities and materials with high resistivity.The energy fraction deposited as Ohmic heating can be as high as 20%-30%.Typical ion divergences with half-angles of about 5°-10°will modify the proton energy deposition substantially and should be taken into account.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604058)the Guangxi Natural Science Foundation(Grant Nos.2020GXNSFAA297041 and 2023JJA110112)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2023083)。
文摘We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China (Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation (Grant No.2021M691536)the Natural Science Foundation of Henan Province,China (Grant Nos.202300410534 and 202300410532)the Fund of the Anhui Initiative in Quantum Information Technologies。
文摘The reference-frame-independent(RFI)quantum key distribution(QKD)is suitable for satellite-based links by removing the active alignment on the reference frames.However,how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links.In this paper,based on the mathematical model for characterizing beam wandering,we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering.Our simulation results show that the performance of RFI-QKD is better than the Bennett–Brassard 1984(BB84)QKD with beam wandering in asymptotic case.Furthermore,the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account.Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303400)the National Key R&D Program of China(Grant No.2022YFB3605602)+2 种基金the Key R&D Program of Jiangsu Province(Grant Nos.BE2020004-3 and BE2021026)the National Naturaal Science Foundation of China(Grant No.61974065)Jiangsu Special Professorship,Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics.
文摘We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.
基金supported in part by Fundamental Research Funds for the Central Universities(23xkjc017)at Sun Yat-sen Universitythe National Natural Science Foundation of China(No.12075326)JSPS KAKENHI(No.22H00139)。
文摘The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.
基金funded through the Researchers Supporting Project Number(RSPD2024R596),King Saud University,Riyadh,Saudi Arabia.
文摘The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.