Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig...Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of th...This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of the dynamic model, in conjunction with the three-dimensional finite element method. The 3D numerical data was calculated using Comsol Multiphysics, which accounts for the nonlinearity of the ferromagnetic material and the 3D nature of the HVRM. The outcomes of this study are precise and accurately predict the dynamic behaviour of the HVRM in terms of rotor position response, rotational speed and torque. The distinctive contribution of this work lies in the 3D numerical modelling of the HVRM and the subsequent evaluation and analysis of its dynamic operation. Analytical and numerical 2D studies are less resource-intensive and time-consuming, and are more straightforward and rapid to analyse and interpret. However, they are constrained in their capacity to examine spatial, volumetric interactions and intricate dynamics such as flux studies where three 3D effects cannot be disregarded, winding end effects and the configuration and positioning of the interposed permanent magnet.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As ...Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As the demand for electronic components with high efficiency dramatically increasing,new materials are needed for power device fabrication.Betaphase gallium oxide,an ultra-wide bandgap semiconductor,has been considered as a promising candidate,and variousβ-Ga_(2)O_(3)power devices with high breakdown voltages have been demonstrated.However,the realization of enhancement-mode(E-mode)β-Ga_(2)O_(3)field-effect transistors(FETs)is still challenging,which is a critical problem for a myriad of power electronic applications.Recently,researchers have made some progress on E-modeβ-Ga_(2)O_(3)FETs via various methods,and several novel structures have been fabricated.This article gives a review of the material growth,devices and properties of these E-modeβ-Ga_(2)O_(3)FETs.The key challenges and future directions in E-modeβ-Ga_(2)O_(3)FETs are also discussed.展开更多
Objective: To explore the clinical significance of “3H” nursing mode in improving negative emotions and insomnia in patients with enterostomy through a prospective cohort study. Methods: Adult patients who underwent...Objective: To explore the clinical significance of “3H” nursing mode in improving negative emotions and insomnia in patients with enterostomy through a prospective cohort study. Methods: Adult patients who underwent enterostomy surgery in our gastroenterology department with negative emotions and insomnia between August 2021 and August 2022 were selected as research objects and randomly divided into “3H” nursing mode group and conventional nursing management group. For the conventional nursing group, routine standard nursing mode was adopted after enterostomy, while extra systematic “3H” nursing service on the basis of conventional nursing management was applied for its counterpart. SAS and SDS scores, Pittsburgh sleep quality index, Barthel index and nursing satisfaction were compared between the two groups. Results: SAS and SDS scores, Pittsburgh sleep quality index, Barthel index and nursing satisfaction of “3H” nursing mode group were evidently better than those of conventional nursing management group, and the difference was significant (P Conclusion: The “3H” nursing mode can effectively improve negative emotions of patients with enterostomy, such as anxiety and depression, improve their sleep quality and self-care ability in daily life, and play an important role in building a harmonious relationship between doctors and patients, nurses and patients, which is worthy of clinical application.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03090000 and 2022YFE03060002)National Natural Science Foundation of China(No.12375214)+3 种基金China National Nuclear Corporation Fundamental Research Program(No.CNNC-JCYJ-202236)Innovation Program of Southwestern Institute of Physics(No.202301XWCX006-04)supported by Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)US DoE Office of Science(Nos.DE-FG02-95ER54309 and DE-FC02-04ER54698)。
文摘Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
文摘This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of the dynamic model, in conjunction with the three-dimensional finite element method. The 3D numerical data was calculated using Comsol Multiphysics, which accounts for the nonlinearity of the ferromagnetic material and the 3D nature of the HVRM. The outcomes of this study are precise and accurately predict the dynamic behaviour of the HVRM in terms of rotor position response, rotational speed and torque. The distinctive contribution of this work lies in the 3D numerical modelling of the HVRM and the subsequent evaluation and analysis of its dynamic operation. Analytical and numerical 2D studies are less resource-intensive and time-consuming, and are more straightforward and rapid to analyse and interpret. However, they are constrained in their capacity to examine spatial, volumetric interactions and intricate dynamics such as flux studies where three 3D effects cannot be disregarded, winding end effects and the configuration and positioning of the interposed permanent magnet.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
基金supported in part by the National Basic Research Program of China(Grant No.2021YFB3600202)Key Laboratory Construction Project of Nanchang(Grant No.2020-NCZDSY-008)the Suzhou Science and Technology Foundation(Grant No.SYG202027)。
文摘Power electronic devices are of great importance in modern society.After decades of development,Si power devices have approached their material limits with only incremental improvements and large conversion losses.As the demand for electronic components with high efficiency dramatically increasing,new materials are needed for power device fabrication.Betaphase gallium oxide,an ultra-wide bandgap semiconductor,has been considered as a promising candidate,and variousβ-Ga_(2)O_(3)power devices with high breakdown voltages have been demonstrated.However,the realization of enhancement-mode(E-mode)β-Ga_(2)O_(3)field-effect transistors(FETs)is still challenging,which is a critical problem for a myriad of power electronic applications.Recently,researchers have made some progress on E-modeβ-Ga_(2)O_(3)FETs via various methods,and several novel structures have been fabricated.This article gives a review of the material growth,devices and properties of these E-modeβ-Ga_(2)O_(3)FETs.The key challenges and future directions in E-modeβ-Ga_(2)O_(3)FETs are also discussed.
文摘Objective: To explore the clinical significance of “3H” nursing mode in improving negative emotions and insomnia in patients with enterostomy through a prospective cohort study. Methods: Adult patients who underwent enterostomy surgery in our gastroenterology department with negative emotions and insomnia between August 2021 and August 2022 were selected as research objects and randomly divided into “3H” nursing mode group and conventional nursing management group. For the conventional nursing group, routine standard nursing mode was adopted after enterostomy, while extra systematic “3H” nursing service on the basis of conventional nursing management was applied for its counterpart. SAS and SDS scores, Pittsburgh sleep quality index, Barthel index and nursing satisfaction were compared between the two groups. Results: SAS and SDS scores, Pittsburgh sleep quality index, Barthel index and nursing satisfaction of “3H” nursing mode group were evidently better than those of conventional nursing management group, and the difference was significant (P Conclusion: The “3H” nursing mode can effectively improve negative emotions of patients with enterostomy, such as anxiety and depression, improve their sleep quality and self-care ability in daily life, and play an important role in building a harmonious relationship between doctors and patients, nurses and patients, which is worthy of clinical application.