Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much g...Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce.The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand.There is a new deep learning model called the Green-electrical Production Ensemble(GP-Ensemble).It combines three types of neural networks:convolutional neural networks(CNNs),gated recurrent units(GRUs),and feedforward neural networks(FNNs).The model promises to improve prediction accuracy.The 1965–2023 dataset covers green energy generation statistics from ten Asian countries.Due to the rising energy supply-demand mismatch,the primary goal is to develop the best model for predicting future power production.The GP-Ensemble deep learning model outperforms individual models(GRU,FNN,and CNN)and alternative approaches such as fully convolutional networks(FCN)and other ensemble models in mean squared error(MSE),mean absolute error(MAE)and root mean squared error(RMSE)metrics.This study enhances our ability to predict green electricity production over time,with MSE of 0.0631,MAE of 0.1754,and RMSE of 0.2383.It may influence laws and enhance energy management.展开更多
The implementation of the Grain for Green Program is a great breakthrough in the history of China's ecological environment construction,which can control soil erosion effectively,increase land productivity and improv...The implementation of the Grain for Green Program is a great breakthrough in the history of China's ecological environment construction,which can control soil erosion effectively,increase land productivity and improve the ecological environment.To investigate the eco-environmental benefits brought by the Grain for Green Program,the spatiotemporal variations of vegetation cover in the growing season from 2000 to 2010 across the Hekou-Longmen (He-Long) region were analyzed by using remote sensing information,meteorological data and land use data.Moreover,the impacts of climate and human activities on vegetation change were evaluated objectively.Annual vegetation cover in the growing season increased very significantly.Increased vegetation cover occurred in 98.7% of the region,of which the area for vegetation cover improved slightly constituted 79.8% of the whole area.Vegetation moderately improved was mainly distributed in the south of the He-Long region,covering 9.6% of the area,and the area for vegetation basically unchanged concentrated in the middle and upper reaches of the Wuding River.Precipitation was found to be an important natural factor influencing vegetation cover change.The area of vegetation cover showing a significantly positive correlation with precipitation occupied 22.14% of the region.As driven by policies from the Grain for Green Program,forestland increased significantly and land use structure became more intensive.Human activities played a positive and effective role in the protection,restoration and improvement of vegetation in the places where vegetation cover was basically unchanged,even though precipitation declined greatly,and vegetation improved moderately with massive increases of forestland and grassland.展开更多
Soil erosion becomes a serious environmental problem in the world, especially in western China. An effective management practice called the Grain for Green Program(GGP), which was launched in 1999, aims to reduce soil...Soil erosion becomes a serious environmental problem in the world, especially in western China. An effective management practice called the Grain for Green Program(GGP), which was launched in 1999, aims to reduce soil and water loss and alleviate the ecological environment problem in western China. Two typical counties in western China, the Zhongxian(in Chongqing Municipality) and Ansai(in Shaanxi Province) were chosen to evaluate the dynamic changes of land use and agricultural production structure before and after the implementation of the Program in this paper. The results showed that the cultivated land area was reduced by 7.08% from 1989 to 2003. The cultivated land per person was decreased by 8.42% during 1999-2003. Moreover, the stability index of the secondary sector of the economy was increased from 0.91 in the period 1990-1999 to 0.94 in the following ten years. In addition, the stability index of tertiary economic sector increased from 0.88 to 0.92 in Zhongxian county. Meanwhile, the cultivated land area was reduced by 15.48% from 1990 to 1999. The soil erosion modulus was decreased by 33.33% from 1999 to 2006. Also, the stability index of secondary and tertiary economic sectors was 0.86 in the period 1998-2002. However, it decreased by 77% during 2002 to 2007 in Ansai County. These results imply that the Grain for Green Program had different impact on the two regions. Several effective strategies of soil and water conservation have been carried out to ameliorate the sustainable development of ecological environment and economy in these two counties of western China.展开更多
Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bo...Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bond,we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt(choline chloride)to form a deep eutectic solvent(DES),followed by polymerisation of the DES to form a polymer(poly(DES)).The greenness of AA,DES,and poly(DES)was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice.The toxicity improved from Grade 2(moderately toxic)for AA to Grade 1(slightly toxic)for DESs and Grade 0(non-toxic)for poly(DES)in the in vitro test.Moreover,the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test.Thus,greenness enhancement was successfully achieved,with the greenness following the order AA<DES<poly(DES).Furthermore,the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry,which revealed that the DES can permeate the MGC80-3 cell membrane during the G_(0)/G_(1) phase to adversely affect DNA synthesis in the S phase,but the poly(DES)cannot.Finally,the green poly(DES),which showed good adsorption properties and flexible functionality,was successfully applied as a carrier or excipient of drugs.Through the novel strategy reported herein,greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved,making such acids applicable for green development.展开更多
The implementation of the Grain for Green Program(GGP)has changed the development track of the agricultural eco-economic system in China.In response to the results of a lag study that investigated the coupling between...The implementation of the Grain for Green Program(GGP)has changed the development track of the agricultural eco-economic system in China.In response to the results of a lag study that investigated the coupling between the GGP and the agricultural eco-economic system in a loess hilly region,we used a structural equation model to analyze the survey data from 494 households in Ansai,a district of Yan’an City in Shaanxi Province of China in 2015.The model clarified the direction and intensity of the coupling between the GGP and the agricultural eco-economic system.The coupling benefits were derived through linkages between the program and various chains in the agricultural eco-economic system.The GGP,the agroecosystem of Ansai and their potential coupling effects were in a state of general coordination.The agroecosystem directly affected the coupling effect,with the standardized path coefficient of 0.87,indicating that the agroecosystem in Ansai at this stage provided basic material support for the coupling between the GGP and the agricultural eco-economic system.The direct path coefficient of agroeconomic system impacted on the coupling effect was-0.76,indicating that partial contradictions occurred between the agroeconomic system and the coupling effect.Therefore,although the current agroecosystem in Ansai should be provided sufficient agroecological resources for the benign coupling between the program and the agricultural eco-economic system,agricultural development failed to effectively transform agroecological resources into agricultural economic advantages in this region,which resulted in a relative lag in the development of the agricultural economic system.Thus,the coupling between the GGP and the agricultural eco-economic system was poor.To improve the coupling and the sustainable development of the agricultural eco-economic system in cropland retirement areas,the industrial structure needs to be diversified,the agricultural resources(including agroecological resources,agricultural economic resources and agricultural social resources)need to be rationally allocated,and the chain structure of the agricultural eco-economic system needs to be continuously improved.展开更多
Sustainable development and environmental protection are the themes of the day. One popular policy tool that government uses to promote sustainable development and to protect the environment is green public procuremen...Sustainable development and environmental protection are the themes of the day. One popular policy tool that government uses to promote sustainable development and to protect the environment is green public procurement. Chinese government established its public procurement system in the late 1990s. It has moved to implement green procurement since 2004. In this paper, the authors will first trace the development of Chinese green public procurement program. The authors will then examine the issues involved in its implementation and make suggestions as to how to make green public procurement program more effective. This is one of the first papers examining China’s green public procurement program.展开更多
Industrial poverty alleviation is the core of poverty alleviation in rural areas of China,and it is the fundamental way for the rural poor to achieve stable income and poverty alleviation. Laopingzi Village,Jiaopingdu...Industrial poverty alleviation is the core of poverty alleviation in rural areas of China,and it is the fundamental way for the rural poor to achieve stable income and poverty alleviation. Laopingzi Village,Jiaopingdu Town,Luquan County,Kunming County,Yunnan Province,located in the dry-hot valley area of Jinsha River,has become a typical deep poverty-stricken village due to its special natural conditions.In recent years,in the battle to win the fight against poverty,the people of Laopingzi Village have achieved a virtuous cycle of the ecological environment and an access to get rid of poverty and get rich through vigorously developing green prickleyash planting industry. By the end of 2018,the incidence of poverty in Laopingzi Village Committee dropped from 45. 62% in 2014 to 1. 11%,and the green prickleyash planting industry had achieved remarkable results in poverty alleviation. This article summarizes the specific practices of developing the green prickleyash planting industry in the village,analyzes the main results and successful experiences of the mode and discusses the inspiration of the implementation of green prickleyash cultivation on industrial poverty alleviation,so as to provide an effective practical example for the development and poverty alleviation of poverty-stricken areas.展开更多
The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned thei...The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.展开更多
As an important means regulating the relationship between human and natural ecosystem,ecological restoration program plays a key role in restoring ecosystem functions.The Grain-for-Green Program(GFGP,One of the world...As an important means regulating the relationship between human and natural ecosystem,ecological restoration program plays a key role in restoring ecosystem functions.The Grain-for-Green Program(GFGP,One of the world’s most ambitious ecosystem conservation set-aside programs aims to transfer farmland on steep slopes to forestland or grassland to increase vegetation coverage)has been widely implemented from 1999 to 2015 and exerted significant influence on land use and ecosystem services(ESs).In this study,three ecological models(In VEST,RUSLE,and CASA)were used to accurately calculate the three key types of ESs,water yield(WY),soil conservation(SC),and net primary production(NPP)in Karst area of southwestern China from 1982 to 2015.The impact of GFGP on ESs and trade-offs was analyzed.It provides practical guidance in carrying out ecological regulation in Karst area of China under global climate change.Results showed that ESs and trade-offs had changed dramatically driven by GFGP.In detail,temporally,SC and NPP exhibited an increasing trend,while WY exhibited a decreasing trend.Spatially,SC basically decreased from west to east;NPP basically increased from north to south;WY basically increased from west to east;NPP and SC,SC and WY developed in the direction of trade-offs driven by the GFGP,while NPP and WY developed in the direction of synergy.Therefore,future ecosystem management and restoration policy-making should consider trade-offs of ESs so as to achieve sustainable provision of ESs.展开更多
A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were co...A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were confirmed by bacterial growth and high-performance liquid chromatography(HPLC) analyses. Strain HMG1 was capable of removing 98.8% of the MG in cultures within 12 h and was able to grow vigorously at 20 mg/L MG. A peroxidase gene detected in the genome of strain HMG1 was found to be involved in the MG biodegradation process. The corresponding recombinant peroxidase(r POD) demonstrated high degradative activity at 1 000 mg/L MG. Based on the common candidate intermediates, strain HMG1 was inferred to have one primary MG degradation pathway containing r POD. In addition, five other candidate intermediates of the r POD-MG degradative process were detected. The optimal conditions for MG degradation were determined and showed that strain HMG1 and the r POD enzyme could maintain high bioactivity at a low temperature(20℃), variable p H values(6.0–9.0), higher salinities(100 mmol/L) and other factors, such as multiple metal ions, H2O2 and EDTA.MG-tolerant strain Tenacibaculum sp. HMG1 and its peroxidase have prospective applications as environmental amendments for MG degradation during coastal remediation.展开更多
Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release durin...Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release during litter decomposition in a pine–oak forest ecosystem of the Grain to Green Program(GTGP)area of northern China,a typical pine and oak species(PDS:Pinus densiflora Sieb.,QAC:Quercus acutissima Carr.)were selected in the Taiyi Mountain study area.The ecological stoichiometry characteristics of carbon(C),nitrogen(N)and phosphorus(P)and litter decomposition dynamics were studied by field sampling and quantitative analyses.The results showed the following.(1)The decomposition dynamics of both litters was slow-fast-slow.The most important climatic factor affecting the litter decomposition rate from May to October was precipitation and temperature from November to April of the following year.(2)Throughout the 300-day study,in both litters,C of the two litters was released,N first accumulated and was then released,and P exhibited a release-accumulate-release pattern.(3)C:P was significantly higher than C:N and N:P(p<0.05);the C:N of PSD litter was higher than that of QAC(p<0.05),but the N:P of QAC litter was higher than that of PSD litter(p<0.05).The C:N of both litters was very high in the study area,indicating that the nutrient release ability during litter decomposition in the two typical pine–oak forest ecosystems was relatively weak;therefore,more attention should be paid to nitrogen-fixing species and mixed forests in the GTGP area of northern China.展开更多
Programming difficulties are one of the common problems faced by software engineering students,which can lead to a rapid decline in motivation and even drop out.Probing students’programming difficulties is a crucial ...Programming difficulties are one of the common problems faced by software engineering students,which can lead to a rapid decline in motivation and even drop out.Probing students’programming difficulties is a crucial step in understanding their current programming situation and implementing appropriate instructional interventions.However,how to detect students’programming difficulties accurately without students’awareness remains a big challenge.Address the issues above;this paper adopts a sensor-free difficulties detecting method based on a deep neural network which employs a recurrent neural network(RNN)model and uses the sequential timing data from programming behaviour.The method can detect students’programming difficulties in real-time with 93%accuracy without interference in the programming process.In the long term,this method is the first step for establishing an automated intelligent programming environment.At the same time,it can assist teachers in noticing the difficulties that students encounter.Then,teachers can adjust their teaching plans and provide manual tutoring intervention more quickly.展开更多
At present, green urbanization process is in the initial state in China. In the process of development, how to promote urban development and urbanization will highly integrated. And the ecological environment protecti...At present, green urbanization process is in the initial state in China. In the process of development, how to promote urban development and urbanization will highly integrated. And the ecological environment protection and economic development is an urgent problem to be solved. Based on the guidance of deep ecology, this paper studies the development process of green urbanization; and literature review method and exemplification method are adopted. Firstly, the concept of green urbanization is demonstrated. Secondly, combined with the current situation of green urbanization in China, guided by analysis of deep ecology, the challenge for the development of urbanization is analysed. Finally, based on the deep ecology guided by revelation, the green urbanization path is put forward.展开更多
Evaluation is an essential part of the teaching process,especially in the programming course.Both students and teachers can benefit significantly from automatic program evaluation.It shortens the time required for ass...Evaluation is an essential part of the teaching process,especially in the programming course.Both students and teachers can benefit significantly from automatic program evaluation.It shortens the time required for assessment so that students can get immediate feedback.At the same time,it can also significantly reduce the workload of teachers.Currently,the automated program assessment system mainly uses a combination of static and dynamic analysis methods.The system is faced with two crucial problems of the unfinished code evaluation and the template code construction.This paper proposes a method of combining deep learning with static analysis.The syntax tree repair is used to solve the problem that the code with compiling errors cannot generate the correct syntax tree.Moreover,the target code is converted to a subset of solution space through the syntax tree standardization,which reduces the number of template code needed.Based on deep learning,the embedded token vector keeps the code’s context all the time,which ensures that the lexical-semantic remains unchanged as much as possible after the syntax tree changes.Finally,the standardized tree is represented as a vector by the recursive neural network.Cosine similarity between target and template code vectors is used as an evaluation score.The experiment shows that the similarity scores obtained by this method are consistent with the expert scores.This method can provide support for future research,such as difficult feedback and has great significance.展开更多
On the lawns and central garden of a community in the Haidian District of Beijing, called "Enjili", one can see a number of signs with the "Michelin" logo standing as tall as a man.
基金funded by the Academy of Finland and the University of Vassa,Finland.
文摘Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce.The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand.There is a new deep learning model called the Green-electrical Production Ensemble(GP-Ensemble).It combines three types of neural networks:convolutional neural networks(CNNs),gated recurrent units(GRUs),and feedforward neural networks(FNNs).The model promises to improve prediction accuracy.The 1965–2023 dataset covers green energy generation statistics from ten Asian countries.Due to the rising energy supply-demand mismatch,the primary goal is to develop the best model for predicting future power production.The GP-Ensemble deep learning model outperforms individual models(GRU,FNN,and CNN)and alternative approaches such as fully convolutional networks(FCN)and other ensemble models in mean squared error(MSE),mean absolute error(MAE)and root mean squared error(RMSE)metrics.This study enhances our ability to predict green electricity production over time,with MSE of 0.0631,MAE of 0.1754,and RMSE of 0.2383.It may influence laws and enhance energy management.
基金funded by the funding from the Chinese Academy of Sciences(KZCX2-XB3-13,KZZD-EW-04-03)the National Science Foundation of China(41230852,41101265)and China Census for Water
文摘The implementation of the Grain for Green Program is a great breakthrough in the history of China's ecological environment construction,which can control soil erosion effectively,increase land productivity and improve the ecological environment.To investigate the eco-environmental benefits brought by the Grain for Green Program,the spatiotemporal variations of vegetation cover in the growing season from 2000 to 2010 across the Hekou-Longmen (He-Long) region were analyzed by using remote sensing information,meteorological data and land use data.Moreover,the impacts of climate and human activities on vegetation change were evaluated objectively.Annual vegetation cover in the growing season increased very significantly.Increased vegetation cover occurred in 98.7% of the region,of which the area for vegetation cover improved slightly constituted 79.8% of the whole area.Vegetation moderately improved was mainly distributed in the south of the He-Long region,covering 9.6% of the area,and the area for vegetation basically unchanged concentrated in the middle and upper reaches of the Wuding River.Precipitation was found to be an important natural factor influencing vegetation cover change.The area of vegetation cover showing a significantly positive correlation with precipitation occupied 22.14% of the region.As driven by policies from the Grain for Green Program,forestland increased significantly and land use structure became more intensive.Human activities played a positive and effective role in the protection,restoration and improvement of vegetation in the places where vegetation cover was basically unchanged,even though precipitation declined greatly,and vegetation improved moderately with massive increases of forestland and grassland.
基金the Foundation of National Key Science and Technology Program (2011BAD31B03)the National Natural Science Foundation of China (41001163)+1 种基金Western Light Western Doctor of CAS, the international cooperation program of Sichuan province (2013HH0016)CAS West Action: Experimental and Demonstrational study on soil and water losses and non-point pollution in the Three Gorges (KZCX2-XB3-09)
文摘Soil erosion becomes a serious environmental problem in the world, especially in western China. An effective management practice called the Grain for Green Program(GGP), which was launched in 1999, aims to reduce soil and water loss and alleviate the ecological environment problem in western China. Two typical counties in western China, the Zhongxian(in Chongqing Municipality) and Ansai(in Shaanxi Province) were chosen to evaluate the dynamic changes of land use and agricultural production structure before and after the implementation of the Program in this paper. The results showed that the cultivated land area was reduced by 7.08% from 1989 to 2003. The cultivated land per person was decreased by 8.42% during 1999-2003. Moreover, the stability index of the secondary sector of the economy was increased from 0.91 in the period 1990-1999 to 0.94 in the following ten years. In addition, the stability index of tertiary economic sector increased from 0.88 to 0.92 in Zhongxian county. Meanwhile, the cultivated land area was reduced by 15.48% from 1990 to 1999. The soil erosion modulus was decreased by 33.33% from 1999 to 2006. Also, the stability index of secondary and tertiary economic sectors was 0.86 in the period 1998-2002. However, it decreased by 77% during 2002 to 2007 in Ansai County. These results imply that the Grain for Green Program had different impact on the two regions. Several effective strategies of soil and water conservation have been carried out to ameliorate the sustainable development of ecological environment and economy in these two counties of western China.
基金supported by National Natural Science Foundation of China(22178081)Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202116)+1 种基金Functional Pharmaceutical Chromatographic Materials Innovation Team(605020521006)High-level Talents Introduction Program of Hebei University。
文摘Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bond,we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt(choline chloride)to form a deep eutectic solvent(DES),followed by polymerisation of the DES to form a polymer(poly(DES)).The greenness of AA,DES,and poly(DES)was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice.The toxicity improved from Grade 2(moderately toxic)for AA to Grade 1(slightly toxic)for DESs and Grade 0(non-toxic)for poly(DES)in the in vitro test.Moreover,the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test.Thus,greenness enhancement was successfully achieved,with the greenness following the order AA<DES<poly(DES).Furthermore,the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry,which revealed that the DES can permeate the MGC80-3 cell membrane during the G_(0)/G_(1) phase to adversely affect DNA synthesis in the S phase,but the poly(DES)cannot.Finally,the green poly(DES),which showed good adsorption properties and flexible functionality,was successfully applied as a carrier or excipient of drugs.Through the novel strategy reported herein,greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved,making such acids applicable for green development.
基金This study was supported by the National Natural Science Foundation of China(41571515)the National Key Research and Development Program of China(2016YFC0501707,2016YFC0503702).
文摘The implementation of the Grain for Green Program(GGP)has changed the development track of the agricultural eco-economic system in China.In response to the results of a lag study that investigated the coupling between the GGP and the agricultural eco-economic system in a loess hilly region,we used a structural equation model to analyze the survey data from 494 households in Ansai,a district of Yan’an City in Shaanxi Province of China in 2015.The model clarified the direction and intensity of the coupling between the GGP and the agricultural eco-economic system.The coupling benefits were derived through linkages between the program and various chains in the agricultural eco-economic system.The GGP,the agroecosystem of Ansai and their potential coupling effects were in a state of general coordination.The agroecosystem directly affected the coupling effect,with the standardized path coefficient of 0.87,indicating that the agroecosystem in Ansai at this stage provided basic material support for the coupling between the GGP and the agricultural eco-economic system.The direct path coefficient of agroeconomic system impacted on the coupling effect was-0.76,indicating that partial contradictions occurred between the agroeconomic system and the coupling effect.Therefore,although the current agroecosystem in Ansai should be provided sufficient agroecological resources for the benign coupling between the program and the agricultural eco-economic system,agricultural development failed to effectively transform agroecological resources into agricultural economic advantages in this region,which resulted in a relative lag in the development of the agricultural economic system.Thus,the coupling between the GGP and the agricultural eco-economic system was poor.To improve the coupling and the sustainable development of the agricultural eco-economic system in cropland retirement areas,the industrial structure needs to be diversified,the agricultural resources(including agroecological resources,agricultural economic resources and agricultural social resources)need to be rationally allocated,and the chain structure of the agricultural eco-economic system needs to be continuously improved.
文摘Sustainable development and environmental protection are the themes of the day. One popular policy tool that government uses to promote sustainable development and to protect the environment is green public procurement. Chinese government established its public procurement system in the late 1990s. It has moved to implement green procurement since 2004. In this paper, the authors will first trace the development of Chinese green public procurement program. The authors will then examine the issues involved in its implementation and make suggestions as to how to make green public procurement program more effective. This is one of the first papers examining China’s green public procurement program.
基金Supported by Commissioned Project of Office of Rural Work Leading Group of Kunming Municipal Committee of the Communist Party of China "Study on the Poverty Alleviation Model of Kunming City in the Context of World Poverty Reduction"Construction Project of Party Branch Secretary’s Studio of "Double Leader" Teachers in Colleges and Universities of the Ministry of Education of China
文摘Industrial poverty alleviation is the core of poverty alleviation in rural areas of China,and it is the fundamental way for the rural poor to achieve stable income and poverty alleviation. Laopingzi Village,Jiaopingdu Town,Luquan County,Kunming County,Yunnan Province,located in the dry-hot valley area of Jinsha River,has become a typical deep poverty-stricken village due to its special natural conditions.In recent years,in the battle to win the fight against poverty,the people of Laopingzi Village have achieved a virtuous cycle of the ecological environment and an access to get rid of poverty and get rich through vigorously developing green prickleyash planting industry. By the end of 2018,the incidence of poverty in Laopingzi Village Committee dropped from 45. 62% in 2014 to 1. 11%,and the green prickleyash planting industry had achieved remarkable results in poverty alleviation. This article summarizes the specific practices of developing the green prickleyash planting industry in the village,analyzes the main results and successful experiences of the mode and discusses the inspiration of the implementation of green prickleyash cultivation on industrial poverty alleviation,so as to provide an effective practical example for the development and poverty alleviation of poverty-stricken areas.
基金Under the auspices of the National Key R&D Program of China(No.2017YFC0504701)Science and Technology Service Network Initiative Project of Chinese Academy of Sciences(No.KFJ-STS-ZDTP-036)+1 种基金Fundamental Research Funds for the Central Universities(No.GK201703053)China Postdoctoral Science Foundation(No.2017M623114)
文摘The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.
基金Under the auspices of National Key Technology Research and Development Project of China(No.2018YFC0507301-02)Chinese Academy of Sciences,Strategic Pilot Science and Technology Project(Class A)(No.XDA2002040201)Shaanxi Province Natural Science Basic Research Project(No.2018JM4016)
文摘As an important means regulating the relationship between human and natural ecosystem,ecological restoration program plays a key role in restoring ecosystem functions.The Grain-for-Green Program(GFGP,One of the world’s most ambitious ecosystem conservation set-aside programs aims to transfer farmland on steep slopes to forestland or grassland to increase vegetation coverage)has been widely implemented from 1999 to 2015 and exerted significant influence on land use and ecosystem services(ESs).In this study,three ecological models(In VEST,RUSLE,and CASA)were used to accurately calculate the three key types of ESs,water yield(WY),soil conservation(SC),and net primary production(NPP)in Karst area of southwestern China from 1982 to 2015.The impact of GFGP on ESs and trade-offs was analyzed.It provides practical guidance in carrying out ecological regulation in Karst area of China under global climate change.Results showed that ESs and trade-offs had changed dramatically driven by GFGP.In detail,temporally,SC and NPP exhibited an increasing trend,while WY exhibited a decreasing trend.Spatially,SC basically decreased from west to east;NPP basically increased from north to south;WY basically increased from west to east;NPP and SC,SC and WY developed in the direction of trade-offs driven by the GFGP,while NPP and WY developed in the direction of synergy.Therefore,future ecosystem management and restoration policy-making should consider trade-offs of ESs so as to achieve sustainable provision of ESs.
基金The Scientific Research Project of Xiamen Southern Oceanographic Center under contract No.17GZP007NF03the China Ocean Mineral Resources R&D Association under contract No.DY-125-22-QY-18
文摘A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were confirmed by bacterial growth and high-performance liquid chromatography(HPLC) analyses. Strain HMG1 was capable of removing 98.8% of the MG in cultures within 12 h and was able to grow vigorously at 20 mg/L MG. A peroxidase gene detected in the genome of strain HMG1 was found to be involved in the MG biodegradation process. The corresponding recombinant peroxidase(r POD) demonstrated high degradative activity at 1 000 mg/L MG. Based on the common candidate intermediates, strain HMG1 was inferred to have one primary MG degradation pathway containing r POD. In addition, five other candidate intermediates of the r POD-MG degradative process were detected. The optimal conditions for MG degradation were determined and showed that strain HMG1 and the r POD enzyme could maintain high bioactivity at a low temperature(20℃), variable p H values(6.0–9.0), higher salinities(100 mmol/L) and other factors, such as multiple metal ions, H2O2 and EDTA.MG-tolerant strain Tenacibaculum sp. HMG1 and its peroxidase have prospective applications as environmental amendments for MG degradation during coastal remediation.
基金The study was subsidized by Grants from the Natural Science Foundation of Shandong Province of China(No.ZR2016CM49)the Special Fund for Forestry Scientific Research in the Public Interest(No.201404303-08).This work was supported by CFERN and BEIJING TECHNO SOLUTIONS Award Funds for excellent academic achievements.
文摘Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release during litter decomposition in a pine–oak forest ecosystem of the Grain to Green Program(GTGP)area of northern China,a typical pine and oak species(PDS:Pinus densiflora Sieb.,QAC:Quercus acutissima Carr.)were selected in the Taiyi Mountain study area.The ecological stoichiometry characteristics of carbon(C),nitrogen(N)and phosphorus(P)and litter decomposition dynamics were studied by field sampling and quantitative analyses.The results showed the following.(1)The decomposition dynamics of both litters was slow-fast-slow.The most important climatic factor affecting the litter decomposition rate from May to October was precipitation and temperature from November to April of the following year.(2)Throughout the 300-day study,in both litters,C of the two litters was released,N first accumulated and was then released,and P exhibited a release-accumulate-release pattern.(3)C:P was significantly higher than C:N and N:P(p<0.05);the C:N of PSD litter was higher than that of QAC(p<0.05),but the N:P of QAC litter was higher than that of PSD litter(p<0.05).The C:N of both litters was very high in the study area,indicating that the nutrient release ability during litter decomposition in the two typical pine–oak forest ecosystems was relatively weak;therefore,more attention should be paid to nitrogen-fixing species and mixed forests in the GTGP area of northern China.
基金supported by the 2018-2020 Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province(Grant No.JG2018-46)the Science and Technology Planning Program of Sichuan University and Luzhou(Grant No.2017CDLZG30)the Postdoctoral Science fund of Sichuan University(Grant No.2019SCU12058).
文摘Programming difficulties are one of the common problems faced by software engineering students,which can lead to a rapid decline in motivation and even drop out.Probing students’programming difficulties is a crucial step in understanding their current programming situation and implementing appropriate instructional interventions.However,how to detect students’programming difficulties accurately without students’awareness remains a big challenge.Address the issues above;this paper adopts a sensor-free difficulties detecting method based on a deep neural network which employs a recurrent neural network(RNN)model and uses the sequential timing data from programming behaviour.The method can detect students’programming difficulties in real-time with 93%accuracy without interference in the programming process.In the long term,this method is the first step for establishing an automated intelligent programming environment.At the same time,it can assist teachers in noticing the difficulties that students encounter.Then,teachers can adjust their teaching plans and provide manual tutoring intervention more quickly.
基金supported by the scientific research project of Department of Education of Guangxi Zhuang Autonomous Region (Grant No. KY2016YB522)
文摘At present, green urbanization process is in the initial state in China. In the process of development, how to promote urban development and urbanization will highly integrated. And the ecological environment protection and economic development is an urgent problem to be solved. Based on the guidance of deep ecology, this paper studies the development process of green urbanization; and literature review method and exemplification method are adopted. Firstly, the concept of green urbanization is demonstrated. Secondly, combined with the current situation of green urbanization in China, guided by analysis of deep ecology, the challenge for the development of urbanization is analysed. Finally, based on the deep ecology guided by revelation, the green urbanization path is put forward.
基金supported by the 2018-2020 Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province(Grant No.JG2018-46)the Science and Technology Planning Program of Sichuan University and Luzhou(Grant No.2017CDLZG30)the Postdoctoral Science fund of Sichuan University(Grant No.2019SCU12058).
文摘Evaluation is an essential part of the teaching process,especially in the programming course.Both students and teachers can benefit significantly from automatic program evaluation.It shortens the time required for assessment so that students can get immediate feedback.At the same time,it can also significantly reduce the workload of teachers.Currently,the automated program assessment system mainly uses a combination of static and dynamic analysis methods.The system is faced with two crucial problems of the unfinished code evaluation and the template code construction.This paper proposes a method of combining deep learning with static analysis.The syntax tree repair is used to solve the problem that the code with compiling errors cannot generate the correct syntax tree.Moreover,the target code is converted to a subset of solution space through the syntax tree standardization,which reduces the number of template code needed.Based on deep learning,the embedded token vector keeps the code’s context all the time,which ensures that the lexical-semantic remains unchanged as much as possible after the syntax tree changes.Finally,the standardized tree is represented as a vector by the recursive neural network.Cosine similarity between target and template code vectors is used as an evaluation score.The experiment shows that the similarity scores obtained by this method are consistent with the expert scores.This method can provide support for future research,such as difficult feedback and has great significance.
文摘On the lawns and central garden of a community in the Haidian District of Beijing, called "Enjili", one can see a number of signs with the "Michelin" logo standing as tall as a man.