Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related ...Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related and supporting industries, firm strategy, structure and rivalry, government and chance through the comparison with the other industrial real estates and analysis on horizontal competition in China. Development countermeasures were investigated to improve the competitiveness of the industrial real estate in Guangxi, putting forward the strategies of developing the role of government and business, seizing the opportunities of the times, city-industry integration development, implementation of industrial integration and integration of city development, the implementation of industrial integration and investment planning.展开更多
By using diamond model, the current development status and core competitiveness of the rice seed industry in Guangxi Province were analyzed in detail from the 6 aspects of production factors, demand factors, related i...By using diamond model, the current development status and core competitiveness of the rice seed industry in Guangxi Province were analyzed in detail from the 6 aspects of production factors, demand factors, related industries and support industries, firm strategy, chance factor and government factor, which clarified the advantages of the rice seed industry of Guangxi in the nature and technological factors, firm strategy and government policy, and the disadvantages in demand factors, production cost, infrastructure and related industries. And the corresponding countermeasures were proposed to enhance the competitiveness of the rice seed industry of Guangxi.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cut...A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cutting speed, feed, and depth of cut on surface roughnessare also analyzed in diamond turning aluminum alloy. In order to predict the optimum cuttingconditions during process planning. A lot of experimental results show that the model can predictthe surface roughness effectively under a certain cutting conditions.展开更多
The status quo and problems of industrial cluster of the primary agriculture is discussed by dividing the cluster into primary cluster and advanced cluster and by using Michael Porter's Diamond Model from the five...The status quo and problems of industrial cluster of the primary agriculture is discussed by dividing the cluster into primary cluster and advanced cluster and by using Michael Porter's Diamond Model from the five aspects including production factors, demand factors, relevant industry and supporting industry, the strategy and structure of enterprises and horizontal competition and opportunities and government. In the end, the countermeasures on promoting the development and expansion of industrial cluster of primary agriculture are put forward. Firstly, intensifying the training on farmers and introduce into advanced science and technology results; secondly, perfecting the construction of infrastructure, creating famous brand and widening the channels for funding; thirdly, strengthening the development of relevant industries and supporting industries; fourthly, perfecting land transfer system; improving the degree of systematization and cultivating pillar industries; fifthly, intensifying the government' support on industrial cluster.展开更多
Based on basic theory of Diamond Model,this paper analyzes the competitive power of Zhengzhou urban agriculture from production factors,demand conditions,related and supporting industries,business strategies and struc...Based on basic theory of Diamond Model,this paper analyzes the competitive power of Zhengzhou urban agriculture from production factors,demand conditions,related and supporting industries,business strategies and structure,and horizontal competition.In line with these situations,it introduces that the cluster development is an effective approach to lifting competitive power of Zhengzhou urban agriculture.Finally,it presents following countermeasures and suggestions:optimize spatial distribution for cluster development of urban agriculture;cultivate leading enterprises and optimize organizational form of urban agriculture;energetically develop low-carbon agriculture to create favorable ecological environment for cluster development of urban agriculture.展开更多
A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have ...A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have been considered, and the size effect is accountable forthe new model. It is desired that the model can be well applicable to conventional diamond turningand the model may be employed as a tool in the design of diamond tools. This approach is quitedifferent from traditional investigations primarily based on empirical studies. As the depth of cutbecomes the same order as the rounded cutting edge radius, sliding along the clearance face due toelastic recovery of workpiece material and plowing due to the rounded cutting edge may becomeimportant in micro-machining, the forces acting on the cutting edge rounding and the clearance facecan not be neglected. For this reason, it is very important to understand the influence of someparameters on tool forces and develop a model of the relationship between them.展开更多
Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved sur...Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.展开更多
Based on ab initio calculations,it is found that the donor center of substitutional sulfur(S)in diamond with C2v symmetry is more stable than that with C3vsymmetry,which is different from previous reports in literatur...Based on ab initio calculations,it is found that the donor center of substitutional sulfur(S)in diamond with C2v symmetry is more stable than that with C3vsymmetry,which is different from previous reports in literature.The energy difference of C2vand C3vstructures is qualitatively affected by the supercell size,and the 216-atom supercell could be proposed as the minimum to obtain stable configuration of substitutional S in diamond.Using supercells of up to 512 atoms,the donor level of substitutional S with C2vsymmetry is deep.展开更多
The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals.Among these is lithium,a key component of lithium-ion batteries for electric and hybrid vehicles.
Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia fr...Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.展开更多
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金Supported by the General Project for Humanities and Social Science of the Institutions of Higher Education in Jiangxi Province(GL1458)~~
文摘Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related and supporting industries, firm strategy, structure and rivalry, government and chance through the comparison with the other industrial real estates and analysis on horizontal competition in China. Development countermeasures were investigated to improve the competitiveness of the industrial real estate in Guangxi, putting forward the strategies of developing the role of government and business, seizing the opportunities of the times, city-industry integration development, implementation of industrial integration and integration of city development, the implementation of industrial integration and investment planning.
文摘By using diamond model, the current development status and core competitiveness of the rice seed industry in Guangxi Province were analyzed in detail from the 6 aspects of production factors, demand factors, related industries and support industries, firm strategy, chance factor and government factor, which clarified the advantages of the rice seed industry of Guangxi in the nature and technological factors, firm strategy and government policy, and the disadvantages in demand factors, production cost, infrastructure and related industries. And the corresponding countermeasures were proposed to enhance the competitiveness of the rice seed industry of Guangxi.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金This project is supported by National Natural Science Foun-dation of China (No. 59835180) Scientific Research Foundation of HIT (No.HIT.2000.63).
文摘A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cutting speed, feed, and depth of cut on surface roughnessare also analyzed in diamond turning aluminum alloy. In order to predict the optimum cuttingconditions during process planning. A lot of experimental results show that the model can predictthe surface roughness effectively under a certain cutting conditions.
文摘The status quo and problems of industrial cluster of the primary agriculture is discussed by dividing the cluster into primary cluster and advanced cluster and by using Michael Porter's Diamond Model from the five aspects including production factors, demand factors, relevant industry and supporting industry, the strategy and structure of enterprises and horizontal competition and opportunities and government. In the end, the countermeasures on promoting the development and expansion of industrial cluster of primary agriculture are put forward. Firstly, intensifying the training on farmers and introduce into advanced science and technology results; secondly, perfecting the construction of infrastructure, creating famous brand and widening the channels for funding; thirdly, strengthening the development of relevant industries and supporting industries; fourthly, perfecting land transfer system; improving the degree of systematization and cultivating pillar industries; fifthly, intensifying the government' support on industrial cluster.
文摘Based on basic theory of Diamond Model,this paper analyzes the competitive power of Zhengzhou urban agriculture from production factors,demand conditions,related and supporting industries,business strategies and structure,and horizontal competition.In line with these situations,it introduces that the cluster development is an effective approach to lifting competitive power of Zhengzhou urban agriculture.Finally,it presents following countermeasures and suggestions:optimize spatial distribution for cluster development of urban agriculture;cultivate leading enterprises and optimize organizational form of urban agriculture;energetically develop low-carbon agriculture to create favorable ecological environment for cluster development of urban agriculture.
基金This project is supported by National Natural Science Foundation of China (No.50175022)National Aerospace Support Foundation of China(No.0223HIT07).
文摘A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have been considered, and the size effect is accountable forthe new model. It is desired that the model can be well applicable to conventional diamond turningand the model may be employed as a tool in the design of diamond tools. This approach is quitedifferent from traditional investigations primarily based on empirical studies. As the depth of cutbecomes the same order as the rounded cutting edge radius, sliding along the clearance face due toelastic recovery of workpiece material and plowing due to the rounded cutting edge may becomeimportant in micro-machining, the forces acting on the cutting edge rounding and the clearance facecan not be neglected. For this reason, it is very important to understand the influence of someparameters on tool forces and develop a model of the relationship between them.
基金National Natural Science Foundation of China(Nos.52175430,51935008 and 52105478)China National Postdoctoral Program for Innovative Talents(BX20200234)Open Fund of Tianjin Key Laboratory of Equipment Design and Manufacturing Technology(EDMT)for the support of this work。
文摘Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704143,51672102,51632002,and 11604023)the National Key Research and Development Program of China(Grant Nos.2018YFA0305900 and 2016YFB0201204)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT-15R23)
文摘Based on ab initio calculations,it is found that the donor center of substitutional sulfur(S)in diamond with C2v symmetry is more stable than that with C3vsymmetry,which is different from previous reports in literature.The energy difference of C2vand C3vstructures is qualitatively affected by the supercell size,and the 216-atom supercell could be proposed as the minimum to obtain stable configuration of substitutional S in diamond.Using supercells of up to 512 atoms,the donor level of substitutional S with C2vsymmetry is deep.
基金the Institute of Mineral Deposit Resources, the Chinese Academy of Geological Sciences in Beijing for the Strategic Tri-Rare Metals project support
文摘The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals.Among these is lithium,a key component of lithium-ion batteries for electric and hybrid vehicles.
基金Supported by National Natural Science Foundation(70963014,71210107012)
文摘Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.