Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing w...Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing which has inflatable nylon cells.The modern wingsuits were developed in the 1990's.They are sometimes referred to as birdman suits or flying squirrel suits.展开更多
Through the revelation of“commodity value”,the“invisible hand”described by Adam Smith is now clearly visible.It is precisely“commodity value”that guides people to seek benefits for themselves and for others,addi...Through the revelation of“commodity value”,the“invisible hand”described by Adam Smith is now clearly visible.It is precisely“commodity value”that guides people to seek benefits for themselves and for others,adding enormous wealth to society.展开更多
Ralph Ellison’s Invisible Man deals with the identity issue fundamental for black Americans to reestablish themselves in the white-dominated society.While the narrator suffers from identity crisis in multiples ways,t...Ralph Ellison’s Invisible Man deals with the identity issue fundamental for black Americans to reestablish themselves in the white-dominated society.While the narrator suffers from identity crisis in multiples ways,the paper focuses on the conflict between his need to build a distinctive individual identity with the prerequisite to surrender to collective identity in order to blend in the group.展开更多
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ...The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.展开更多
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode...We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.展开更多
Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi...Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching pr...To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry(TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis(MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.展开更多
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic sh...Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.展开更多
Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of inse...Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes. In this paper, a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings. Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings. A number of SEM images of the elements of the wings, such as the nodus, leading edge, trailing edge, and vein sections, which play dominant roles in strengthening the whole structure, are presented. The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses. Considering the patterns of the longitudinal corrugations of the wings obtained in this paper, it can be supposed that they increase the load-bearing capacity, giving the wings an ability to tolerate dynamic loading conditions. In addition, it is suggested that the longitudinal veins, along with the leading and trailing edges, are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness, preventing crack propagation, and allowing the wings to sustain a significant amount of damage without loss of strength.展开更多
文摘Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing which has inflatable nylon cells.The modern wingsuits were developed in the 1990's.They are sometimes referred to as birdman suits or flying squirrel suits.
文摘Through the revelation of“commodity value”,the“invisible hand”described by Adam Smith is now clearly visible.It is precisely“commodity value”that guides people to seek benefits for themselves and for others,adding enormous wealth to society.
文摘Ralph Ellison’s Invisible Man deals with the identity issue fundamental for black Americans to reestablish themselves in the white-dominated society.While the narrator suffers from identity crisis in multiples ways,the paper focuses on the conflict between his need to build a distinctive individual identity with the prerequisite to surrender to collective identity in order to blend in the group.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)Ph.D.Student Foundation of Chinese Ministry of Education(20030006022)
文摘The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
基金Acknowledgement This research was supported by the National Natural Science Foundation of China (Grant No. 10732030) and the 111 Project (B07009).
文摘We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.
基金a Multidisciplinary University Research Initiative (MURI) project sponsored by AFOSR
文摘Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
基金financially supported by the National Science and Technology Supporting Program (No. 2012BAB10B08)the National High Technology Research and Development Program of China (No. 2012AA060501)
文摘To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry(TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis(MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.
文摘Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.
文摘Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes. In this paper, a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings. Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings. A number of SEM images of the elements of the wings, such as the nodus, leading edge, trailing edge, and vein sections, which play dominant roles in strengthening the whole structure, are presented. The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses. Considering the patterns of the longitudinal corrugations of the wings obtained in this paper, it can be supposed that they increase the load-bearing capacity, giving the wings an ability to tolerate dynamic loading conditions. In addition, it is suggested that the longitudinal veins, along with the leading and trailing edges, are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness, preventing crack propagation, and allowing the wings to sustain a significant amount of damage without loss of strength.