From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that ...From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.展开更多
The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reli...The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.展开更多
The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ...The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.展开更多
Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve bo...Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.展开更多
Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symp...Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle.Additionally,the lack of an evaluation system for the cer-ebral ischemia/reperfusion(I/R)model of gerbils has shackled the application of this model.Methods:We created a symptom-oriented principle and detailed neurobehavioral scoring criteria.At different time points of reperfusion,we analyzed the alteration in locomotion by rotarod test and grip force score,infarct volume by triphenyltetrazo-lium chloride(TTC)staining,neuron loss using Nissl staining,and histological charac-teristics using hematoxylin-eosin(H&E)straining.Results:With a successful model rate of 56%,32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury,and the mortality rate in the male gerbils was significantly higher than that in the female gerbils.The suc-cessfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion;formed obvious infarction;exhibited typi-cal pathological features,such as tissue edema,neuronal atrophy and death,and vacuolated structures;and were partially recovered with the extension of reperfu-sion time.Conclusion:This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model,which could provide a new cerebral I/R model of gerbils with more practical applications.展开更多
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o...The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.展开更多
As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
The concept of Arga and Bilig serves as a foundational principle in both ancient Mongolian philosophy and traditional Mongolian medicine (TMM). Arga, symbolized by brightness and associated with qualities of fire and ...The concept of Arga and Bilig serves as a foundational principle in both ancient Mongolian philosophy and traditional Mongolian medicine (TMM). Arga, symbolized by brightness and associated with qualities of fire and activity, complements Bilig, symbolized by darkness and representing attributes of water and stillness. Together, these opposing forces permeate all aspects of existence, from the genesis of parenthood to the interplay of day and night. Understanding Arga-Bilig is crucial for diagnosing and treating diseases, as it illuminates the source of imbalance within the body. This review provides an overview of the significance of Arga-Bilig in Mongolian philosophy and its application in TMM, emphasizing the dynamic interplay of these opposing forces and their role in maintaining balance and harmony within the body.展开更多
We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ...We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
The Mongolian Plateau in Central Asia is an intracontinental tectonic system far from active plate boundaries.Despite its distance from these boundaries,the plateau is characterized by intense crustal deformation acco...The Mongolian Plateau in Central Asia is an intracontinental tectonic system far from active plate boundaries.Despite its distance from these boundaries,the plateau is characterized by intense crustal deformation accompanied by voluminous Cenozoic volcanism and active modern seismicity.However,the intraplate deformation mechanism has long been debated owing to the scarcity of observations and contradictions between different results.In recent years,growing geophysical studies have been conducted on the Mongolian Plateau,providing constraints on its lithospheric structure and dynamics.Here,we review the geophysical research on the Mongolian Plateau over the last decade,including seismological,geodetic,gravity,magnetotelluric,and geodynamic aspects.This review aims to(a)describe crustal and mantle structures based on multiscale seismic images;(b)describe deformation patterns based on seismic anisotropy,focal mechanisms,and global positioning system(GPS)observations;and(c)discuss the mechanisms behind intraplate deformation,volcanism,and seismic activity across the Mongolian Plateau.Seismic images show that the crustal structure of the plateau has significant east-west differences.Several blocks in the western Mongolian Plateau have thick crusts,including the Altai Mountains,Hovsgol Rift,and Hangay Dome.The lithospheric deformation across the Mongolian Plateau has strong lateral variation,with NE-SW shortening in the Altai Mountains and W-E or NW-SE shear deformation in the Hangay Dome region and the eastern part.The varied deformation may result from the superposition of multiple mechanisms,including far-field stress in the Altai Mountains,mantle upwelling,and mantle flow in the Hangay Dome region.However,it is difficult to identify the geodynamics of the formation of the entire Mongolian Plateau because the deformation is too complicated,and the present models are not sufficient and are always partial.Overall,this review encompasses recent advances in seismic observations of the Mongolian Plateau,illuminates the heterogeneities in the crust and mantle structure and deformation of the plateau,and discusses the mechanisms behind the deformation,magmatism,and seismicity.展开更多
This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
This paper mainly introduces the origin of Mongolian medicine diet therapy,classic works of Mongolian medicine diet therapy and clinical conventional diet therapy through literature research,to provide a certain refer...This paper mainly introduces the origin of Mongolian medicine diet therapy,classic works of Mongolian medicine diet therapy and clinical conventional diet therapy through literature research,to provide a certain reference for giving reasonable diet therapy for clinical patients and improving treatment and prognosis research.展开更多
Through literature and clinical research,the current status of Mongolian medicine treatment for breast hyperplasia is discussed,such as oral administration of Mongolian medicine for treatment,oral administration of Mo...Through literature and clinical research,the current status of Mongolian medicine treatment for breast hyperplasia is discussed,such as oral administration of Mongolian medicine for treatment,oral administration of Mongolian medicine combined with external application for treatment,combination of Mongolian medicine acupuncture therapy and oral administration of Mongolian medicine for treatment,integrated treatment of Mongolian and Western medicine,and combination therapy of Mongolian and traditional Chinese medicine,providing new ideas and choices for clinical research.展开更多
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the...The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
Traditional Mongolian medicine(TMM)integrates Tibetan and Chinese medicine with indigenous Mongolian practices,focusing on the balance of three core essences:Khii,Shar,and Badgan,derived from the Five Elements-earth,w...Traditional Mongolian medicine(TMM)integrates Tibetan and Chinese medicine with indigenous Mongolian practices,focusing on the balance of three core essences:Khii,Shar,and Badgan,derived from the Five Elements-earth,water,fire,wind,and space.These essences regulate both physical and psychological processes,and their imbalance,often caused by diet,behavior,or environment,leads to disease.TMM utilizes holistic diagnostic methods such as pulse diagnosis,visual inspection,and lifestyle evaluation to identify imbalances of three essences.Treatments include herbal remedies,dietary adjustments,behavior modification,and accessory therapies like moxibustion and massage to restore balance.This mini review examines the philosophical underpinnings,diagnostic techniques,and therapeutic strategies to Khii,Shar,and Badgan,highlighting their importance in both traditional and modern integrative healthcare.展开更多
Objective:To systematically evaluate the safety and efficacy of Mongolian medical warm acupuncture in the treatment of lumbar disc herniation(LDH).Methods:CNKI,Wanfang,VIP,Pubmed,Embase,Cochrane Library,and other data...Objective:To systematically evaluate the safety and efficacy of Mongolian medical warm acupuncture in the treatment of lumbar disc herniation(LDH).Methods:CNKI,Wanfang,VIP,Pubmed,Embase,Cochrane Library,and other databases were searched.The randomized controlled trials(RCTs)on the treatment of LDH with Mongolian medical warm acupuncture were manually searched in the Chinese Journal of Ethnic Medicine,Chinese Journal of Mongolian Medicine,Journal of Inner Mongolia University for Nationalities,and Journal of Inner Mongolia Medical University.The search time limit was from January 2000 to October 2023.RevMan5.4 software was used to analyze the included and excluded literature.Results:A total of 8 RCTs involving 1,042 patients with LDH were included,with 551 patients in the observation group and 491 patients in the control group.The results of the meta-analysis showed that a total of 8 randomized controlled trials were included in the treatment of LDH with Mongolian medical warm acupuncture compared with simple acupuncture(RR=1.18,95%CI=[1.12,1.23],P<0.00001).Conclusion:The total effective rate of Mongolian medical warm acupuncture for LDH is higher than that of simple acupuncture.However,due to the low quality of the literature included in this study,multi-dimensional,large sample size,and more rigorous clinical randomized trials are needed for further verification in the future.展开更多
The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for ...The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.展开更多
基金financed from the grant of the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ-2023001)。
文摘From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.
文摘The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.
基金supported by Orient Resources Ltd.College of Earth Sciences,Jilin University。
文摘The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.
基金supported by the National Natural Science Foundation of China(No.61977029)the Fundamental Research Funds for the Central Universities,CCNU(No.3110120001).
文摘Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFF0702402National Natural Science Foundation of China,Grant/Award Number:32070531。
文摘Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle.Additionally,the lack of an evaluation system for the cer-ebral ischemia/reperfusion(I/R)model of gerbils has shackled the application of this model.Methods:We created a symptom-oriented principle and detailed neurobehavioral scoring criteria.At different time points of reperfusion,we analyzed the alteration in locomotion by rotarod test and grip force score,infarct volume by triphenyltetrazo-lium chloride(TTC)staining,neuron loss using Nissl staining,and histological charac-teristics using hematoxylin-eosin(H&E)straining.Results:With a successful model rate of 56%,32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury,and the mortality rate in the male gerbils was significantly higher than that in the female gerbils.The suc-cessfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion;formed obvious infarction;exhibited typi-cal pathological features,such as tissue edema,neuronal atrophy and death,and vacuolated structures;and were partially recovered with the extension of reperfu-sion time.Conclusion:This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model,which could provide a new cerebral I/R model of gerbils with more practical applications.
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
基金Supported by R&D Program of Beijing Municipal Education Commission of China(Grant No.KZ200010009041)Beijing Municipal University Youth Top Talents Training Program of China(Grant No.CIT&TCD201704014)Natural Science Foundation of China(Grant No.51475003).
文摘The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
基金Science and Technology Young Talents Development Project of Inner Mongolia Autonomous Region(NJYT22048)Inner Mongolia Natural Science Foundation(2023LHMS08002)NMPA Key Laboratory Open Fund Project(MDK2023025).
文摘The concept of Arga and Bilig serves as a foundational principle in both ancient Mongolian philosophy and traditional Mongolian medicine (TMM). Arga, symbolized by brightness and associated with qualities of fire and activity, complements Bilig, symbolized by darkness and representing attributes of water and stillness. Together, these opposing forces permeate all aspects of existence, from the genesis of parenthood to the interplay of day and night. Understanding Arga-Bilig is crucial for diagnosing and treating diseases, as it illuminates the source of imbalance within the body. This review provides an overview of the significance of Arga-Bilig in Mongolian philosophy and its application in TMM, emphasizing the dynamic interplay of these opposing forces and their role in maintaining balance and harmony within the body.
基金the National Natural Science Foundation of China(Grant No.12004049).
文摘We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.
基金National Key Research and Development Program of China(Nos.2022YFF0800601 and 2022YFF0800701)Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32).
文摘The Mongolian Plateau in Central Asia is an intracontinental tectonic system far from active plate boundaries.Despite its distance from these boundaries,the plateau is characterized by intense crustal deformation accompanied by voluminous Cenozoic volcanism and active modern seismicity.However,the intraplate deformation mechanism has long been debated owing to the scarcity of observations and contradictions between different results.In recent years,growing geophysical studies have been conducted on the Mongolian Plateau,providing constraints on its lithospheric structure and dynamics.Here,we review the geophysical research on the Mongolian Plateau over the last decade,including seismological,geodetic,gravity,magnetotelluric,and geodynamic aspects.This review aims to(a)describe crustal and mantle structures based on multiscale seismic images;(b)describe deformation patterns based on seismic anisotropy,focal mechanisms,and global positioning system(GPS)observations;and(c)discuss the mechanisms behind intraplate deformation,volcanism,and seismic activity across the Mongolian Plateau.Seismic images show that the crustal structure of the plateau has significant east-west differences.Several blocks in the western Mongolian Plateau have thick crusts,including the Altai Mountains,Hovsgol Rift,and Hangay Dome.The lithospheric deformation across the Mongolian Plateau has strong lateral variation,with NE-SW shortening in the Altai Mountains and W-E or NW-SE shear deformation in the Hangay Dome region and the eastern part.The varied deformation may result from the superposition of multiple mechanisms,including far-field stress in the Altai Mountains,mantle upwelling,and mantle flow in the Hangay Dome region.However,it is difficult to identify the geodynamics of the formation of the entire Mongolian Plateau because the deformation is too complicated,and the present models are not sufficient and are always partial.Overall,this review encompasses recent advances in seismic observations of the Mongolian Plateau,illuminates the heterogeneities in the crust and mantle structure and deformation of the plateau,and discusses the mechanisms behind the deformation,magmatism,and seismicity.
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
文摘This paper mainly introduces the origin of Mongolian medicine diet therapy,classic works of Mongolian medicine diet therapy and clinical conventional diet therapy through literature research,to provide a certain reference for giving reasonable diet therapy for clinical patients and improving treatment and prognosis research.
文摘Through literature and clinical research,the current status of Mongolian medicine treatment for breast hyperplasia is discussed,such as oral administration of Mongolian medicine for treatment,oral administration of Mongolian medicine combined with external application for treatment,combination of Mongolian medicine acupuncture therapy and oral administration of Mongolian medicine for treatment,integrated treatment of Mongolian and Western medicine,and combination therapy of Mongolian and traditional Chinese medicine,providing new ideas and choices for clinical research.
基金National Key Research and Development Program on Enhancement of Soil and Water Ecological Security and Guarantee Technology in Desert Oasis Areas(2023YFF130420103)Three North Project of Xinhua Forestry Highland Demonstration Science and Technology Construction Project,the Technology and Demonstration of Near-Natural Modification of Artificial Protective Forest Structures and Enhancement of Soil and Water Conservation Functions in Ecological Protection Belt(2023YFF1305201)+2 种基金Multi-dimensional Coupled Soil-surface-groundwater Hydrological Processes and Vegetation Regulation Mechanism in Loess Area of the National Natural Science Foundation of China(U2243202)Hot Tracking Program of Beijing Forestry University"Planting a Billion Trees"Program and China-Mongolia Cooperation on Desertification in China(2023BLRD04)Research on Ecological Photovoltaic Vegetation Configuration Model and Restoration Technology(AMKJ2023-17).
文摘The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金supported by Science and Technology Young Talents Development Project of Inner Mongolia Autonomous Region(NJYT22048)NMPA Key Laboratory Open Fund Project(MDK2023025).
文摘Traditional Mongolian medicine(TMM)integrates Tibetan and Chinese medicine with indigenous Mongolian practices,focusing on the balance of three core essences:Khii,Shar,and Badgan,derived from the Five Elements-earth,water,fire,wind,and space.These essences regulate both physical and psychological processes,and their imbalance,often caused by diet,behavior,or environment,leads to disease.TMM utilizes holistic diagnostic methods such as pulse diagnosis,visual inspection,and lifestyle evaluation to identify imbalances of three essences.Treatments include herbal remedies,dietary adjustments,behavior modification,and accessory therapies like moxibustion and massage to restore balance.This mini review examines the philosophical underpinnings,diagnostic techniques,and therapeutic strategies to Khii,Shar,and Badgan,highlighting their importance in both traditional and modern integrative healthcare.
文摘Objective:To systematically evaluate the safety and efficacy of Mongolian medical warm acupuncture in the treatment of lumbar disc herniation(LDH).Methods:CNKI,Wanfang,VIP,Pubmed,Embase,Cochrane Library,and other databases were searched.The randomized controlled trials(RCTs)on the treatment of LDH with Mongolian medical warm acupuncture were manually searched in the Chinese Journal of Ethnic Medicine,Chinese Journal of Mongolian Medicine,Journal of Inner Mongolia University for Nationalities,and Journal of Inner Mongolia Medical University.The search time limit was from January 2000 to October 2023.RevMan5.4 software was used to analyze the included and excluded literature.Results:A total of 8 RCTs involving 1,042 patients with LDH were included,with 551 patients in the observation group and 491 patients in the control group.The results of the meta-analysis showed that a total of 8 randomized controlled trials were included in the treatment of LDH with Mongolian medical warm acupuncture compared with simple acupuncture(RR=1.18,95%CI=[1.12,1.23],P<0.00001).Conclusion:The total effective rate of Mongolian medical warm acupuncture for LDH is higher than that of simple acupuncture.However,due to the low quality of the literature included in this study,multi-dimensional,large sample size,and more rigorous clinical randomized trials are needed for further verification in the future.
基金Project(74142000023) supported by Postdoctoral Science Foundation of Central South University,ChinaProject(2012M521547) supported by China Postdoctoral Science FoundationProject(721500452) supported by the Fundamental Research Funds for the Central Universities,China
文摘The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.