The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typica...The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typically random and unpredictable. Some people use the lottery terminal randomly generates numbers for them, some players choose numbers that hold personal significance to them, such as birthdays, anniversaries, or other important dates, some enthusiasts have turned to statistical analysis as a means to analyze past winning numbers identify patterns or frequencies. In this paper, we use order statistics to estimate the probability of specific order of numbers or number combinations being drawn in future drawings.展开更多
Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical ...Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical energy production and potential carbon credits from avoided CH4 emissions) from its proper management in a municipal solid waste landfill located in Ouagadougou, Burkina Faso. The modeling was carried out using two first-order decay (FOD) models (LandGEM V3.02 and SWANA) using parameters evaluated on the basis of the characteristics of the waste admitted to the landfill and weather data for the site. At the same time, production data have been collected since 2016 in order to compare them with the model results. The results obtained from these models were compared to experimental one. For the simulation of methane production, the SWANA model showed better consistency with experimental data, with a coefficient of determination (R²) of 0.59 compared with the LandGEM model, which obtained a coefficient of 0.006. Thus, despite the low correlation values linked to the poor consistency of experimental data, the SWANA model models methane production much better than the LandGEM model. Thus, despite the low correlation values linked to the poor consistency of the experimental data, the SWANA model models methane production much better than the LandGEM V3.02 model. It was noted that the poor consistency of the experimental data justifies these low coefficients, and that they can be improved in the future thanks to ongoing in situ measurements. According to the SWANA model prediction, in 27 years of operation a biogas plant with 33% electrical efficiency using biogas from the Polesgo landfill would avoid 1,340 GgCO2e. Also, the evaluation of revenues due to electricity and carbon credit gave a total revenue derived from methane production of US$27.38 million at a cost of US$10.5/tonne CO2e.展开更多
This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We der...This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse function...This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse functions—inventory tracking, order fulfillment, and logistics efficiency. Our findings indicate AI automation enables real-time inventory visibility, optimized picking routes, and dynamic delivery scheduling, which drones cannot match. AI better leverages data insights for intelligent decision-making across warehouse operations, supporting improved productivity and lower operating costs.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system...This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the...This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
文摘The lottery has long captivated the imagination of players worldwide, offering the tantalizing possibility of life-changing wins. While winning the lottery is largely a matter of chance, as lottery drawings are typically random and unpredictable. Some people use the lottery terminal randomly generates numbers for them, some players choose numbers that hold personal significance to them, such as birthdays, anniversaries, or other important dates, some enthusiasts have turned to statistical analysis as a means to analyze past winning numbers identify patterns or frequencies. In this paper, we use order statistics to estimate the probability of specific order of numbers or number combinations being drawn in future drawings.
文摘Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical energy production and potential carbon credits from avoided CH4 emissions) from its proper management in a municipal solid waste landfill located in Ouagadougou, Burkina Faso. The modeling was carried out using two first-order decay (FOD) models (LandGEM V3.02 and SWANA) using parameters evaluated on the basis of the characteristics of the waste admitted to the landfill and weather data for the site. At the same time, production data have been collected since 2016 in order to compare them with the model results. The results obtained from these models were compared to experimental one. For the simulation of methane production, the SWANA model showed better consistency with experimental data, with a coefficient of determination (R²) of 0.59 compared with the LandGEM model, which obtained a coefficient of 0.006. Thus, despite the low correlation values linked to the poor consistency of experimental data, the SWANA model models methane production much better than the LandGEM model. Thus, despite the low correlation values linked to the poor consistency of the experimental data, the SWANA model models methane production much better than the LandGEM V3.02 model. It was noted that the poor consistency of the experimental data justifies these low coefficients, and that they can be improved in the future thanks to ongoing in situ measurements. According to the SWANA model prediction, in 27 years of operation a biogas plant with 33% electrical efficiency using biogas from the Polesgo landfill would avoid 1,340 GgCO2e. Also, the evaluation of revenues due to electricity and carbon credit gave a total revenue derived from methane production of US$27.38 million at a cost of US$10.5/tonne CO2e.
文摘This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘This paper analyzes how artificial intelligence (AI) automation can improve warehouse management compared to emerging technologies like drone usage. Specifically, we evaluate AI’s impact on crucial warehouse functions—inventory tracking, order fulfillment, and logistics efficiency. Our findings indicate AI automation enables real-time inventory visibility, optimized picking routes, and dynamic delivery scheduling, which drones cannot match. AI better leverages data insights for intelligent decision-making across warehouse operations, supporting improved productivity and lower operating costs.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
文摘This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.