Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sh...Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sheet(EAIS) to its south. Whereas, in Larsemann Hills area the northern and north-western boundary is coastal area and EAIS in the southern part,exhibiting polar lowland between the marine and continental glacial ecosystems. Physico-chemical parameters of water samples from different lakes of both of these two distinct locations are quite contrasting and have indicated influence of lithology, weathering, evaporation and precipitation. The lake water chemistry in Larsemann Hills area is mainly governed by the lithology of the area while Schirmacher lakes exhibit influence of precipitation and rock composition. All major ions of lake waters indicate balanced ionic concentrations. The atmospheric precipitation has significantly modified the ionic distributions in the lakes and channels. Carbonation is the main proton supplying geochemical reactions involved in the rock weathering and this is an important mechanism which controls the hydrochemistry. The lake water hydrochemistry differs widely not only between two distant periglacial zones but also within a short distance of a single periglacial entity, indicating influence of territorial climate over hydrochemistry.展开更多
Gangue hill is the associated accumulation landscape of long-term coal mining.There are a large number of gangue hills left in coal mining cities,which not only causes ecological damage but also affects the urban envi...Gangue hill is the associated accumulation landscape of long-term coal mining.There are a large number of gangue hills left in coal mining cities,which not only causes ecological damage but also affects the urban environment,thus becoming the focus of urban landscape transformation of coal mining cities.With the increase of people’s demand for ecological leisure,it has become the first choice to transform gangue hill and its surrounding areas into community parks.From the perspective of urban space and landscape system,as a huge regeneration landform in the city and a unique landscape in the mining area,gangue hill not only needs to be afforested,but also needs to be connected with mining heritages and landscape nodes in the city to form the interaction between“scenery”and“view”,so as to form an integrated mining cultural landscape system at the urban level.On the basis of this concept,taking the gangue hill of Zhongxing in Zaozhuang City as an example,this paper quantitatively analyzes the best landscape construction site in the gangue hill via viewshed analysis in GIS.Through this method,the gangue hill and Zhongxing mining heritage are closely combined,so as to establish the interactive relationship between“scenery”and“view”.It can guide the planning and design of sightseeing route and footpath system,and also provide a technical support for the design of community parks transformed from gangue hills.展开更多
Water scarcity has always been one of the most important obstacles in the process of agricultural development in arid and low-rainfall climates. In farming, the water quality also plays an important role;as the poor q...Water scarcity has always been one of the most important obstacles in the process of agricultural development in arid and low-rainfall climates. In farming, the water quality also plays an important role;as the poor quality of water can be one of the limiting factors in this sector that in addition to the agricultural problems has also caused soil problems. In this paper, we introduce and study an indigenous method of water conservation and soil protection in the east of Iran termed as “water-colouring” and the role of geomorphologic features of marl hills in one of the rivers located in the southern slopes of the Joghtay Mountain (Kalateh-Sadat Watershed). In this study, field observation, sampling and analysis of water and sediment, physicochemical experiments, SPSS software for statistical analysis and satellite images have been used to produce digital models. Finally, the effects of muddy water and clear water have been compared in terms of chemical quality and productivity of agricultural land. The results show that the method of water-colouring is the best indigenous-economical method for moisture retention and regeneration of the agricultural land soil. Given the statistical reasons and studying the other researches in this field, water-colouring causes change texture and soil composition, fertility of agricultural land and reduce the losses due to evaporation and infiltration.展开更多
A study was conducted in Kaptai reservoir, one of the largest man-made freshwater lakes of South-east Asia, to determine present status of water quality and its suitability for fishing and other uses. Water samplings ...A study was conducted in Kaptai reservoir, one of the largest man-made freshwater lakes of South-east Asia, to determine present status of water quality and its suitability for fishing and other uses. Water samplings were from middle part of the reservoir at 0.2 and 0.8 fractional depths at five different locations from upstream to downstream viz. Burburichara, Maichchari, Subolong, Basanthakum, and Rangamati. Water analyses show that concentrations of NO3-N, K+ and total P, and suspended solid at all the sampling stations were beyond the recommended values for fish culture. Concentrations of Na^+, Ca^2+, Mg^2+, SO4^2-, Cl^-, total dissolved solid (TDS), dissolved oxygen (DO) and chemical oxygen demand (COD) were within the standards for aquaculture. Concentrations of NO3-N, SO4^2-, K+ and total P showed no definite trend with depths, locations as well as rainy and dry seasons. Water pH, conductivity, Na^+ and HCO3- contents were lower in rainy season, and DO and COD higher at almost all the locations in both the depths, compared with dry season. Total solids and concentrations of TDS, DO, COD, Ca^2+, Mg^2+ and Na^+ were higher in upstream and decreased gradually towards downstream in the reservoir. Concentrations of DO and Ca2+ and pH were higher and Mg2+ less at 0.2-fractional depth than those at 0.8-fractional depth at almost all the locations. The reservoir is in mesotrophic condition containing high concentration of NO3-N and total P, in alarming status with the presence of excessive suspended solids from urban pollution around the town. It is necessary to adopt measures for protecting water quality in the reservoir due to such deteriorations.展开更多
Abstract: We report the effects of shifting cultivation on water quality in 16 creeks investigated once in 2007 and twice in 2008 in 16 apparently similar small neighboring watersheds, each of 3 to 5 ha, at four loca...Abstract: We report the effects of shifting cultivation on water quality in 16 creeks investigated once in 2007 and twice in 2008 in 16 apparently similar small neighboring watersheds, each of 3 to 5 ha, at four locations around Barkal sub-district under Rangamati District of Chittagong Hill Tracts in Bangladesh. Concentrations of 5042- and K+, and pH in creek water were lower, and NO3-N and Na+ concentrations were higher in shifting-cultivation land compared to land with either plantation or natu- ral forest or a combination of these cover types. Shifting cultivation effects on some water quality parameters were not significant due to change in land cover of the watershed between two sampling periods either through introduction of planted tree species or naturally regenerated vegetation. Conductivity and concentrations of HCO3- PO43-, Ca2-- and Mg2+ in creek water showed no definite trend between shifting cultivation and the other land cover types. At one area near the Forest Range Office of Barkal, creek water pH was 5.8 under land cover with a com- bination of shifting cultivation and plantation. At this area Na~ concentra- tion in shitting-cultivation land ranged from 32.33 to 33.00 mg-L" and in vegetated area from 25.00 to 30.50 mg.L-1 in 2007. At another area, Chaliatali Chara, SO42 concentration in a shifting-cultivation watershed ranged from 4.46 to 10.51 mg-L-1, lower than in a vegetated watershed that ranged from 11.69 to 19.98 mg.L-1 in 2007. S042-concentration in this shifting-cultivation area ranged from 1.28 to 1.37 mg.L^-1 and in the vegetated area from 1.37 to 3.50 mg-L^-1 in 2008.展开更多
In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional ...In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.展开更多
Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory st...Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory studies and based on analysis of its drive mechanism, field wells’ parameters were used to analyze the effects of different conditions of the fractured metamorphic reservoir with bottom water on its law of wa-ter-cut variation and the waterflooding efficiency. The results show that for the Budate buried hill reservoir with bottom water, the gravity should be taken into consideration to determine reasonable perforation ratio and production pressure difference. And because of the acid sensitivity of the buried hill reservoir, application of proper clay stabilizer will enhance the field oil recovery to a satisfactory extent.展开更多
The flowing water was collected from very small creeks and seepage water from small dug holes at three different areas,viz.Manikchari,Ghagra and Muralipara in Rangamati district of Chittagong Hill Tracts,Bangladesh to...The flowing water was collected from very small creeks and seepage water from small dug holes at three different areas,viz.Manikchari,Ghagra and Muralipara in Rangamati district of Chittagong Hill Tracts,Bangladesh to investigate the impact of the existing varied land covers on water quality.Chemical analyses shows that flowing creek water from either mature mixed plantation or young gamar(Gmelina arborea) plantation had significantly(p〈0.05) higher pH value,SO4^2-and Ca^2+ concentrations,and significantly lower Na+ concentration at Manikchari,compared to natural vegetation and plantation in combination.In flowing creek water of Ghagra,the concentrations of SO4^2-and K+,conductivity and total dissolved solids from watershed of 8-year-old teak(Tectona grandis) plantation were significantly higher and the concentrations of HCO3^-,NO3^-and PO4^3-were significantly lower,compared to those of watershed of degraded natural vegetation.At Muralipara,flowing creek water from natural vegetation and shifting cultivated land in combination showed significantly higher concentrations of HCO3^-,NO3^-,Na+,K+,Ca^2+ and Mg^2+,and conductivity and total dissolved solids than seepage water as well as tube well water installed in shifting cultivated area alone.展开更多
Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractu...Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.展开更多
Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ...Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.展开更多
Study of the groundwater table development and runoff generation is one of the most important parts of hydrology to develop a clear concept, especially in hill slope. The study is more complex in the real field rather...Study of the groundwater table development and runoff generation is one of the most important parts of hydrology to develop a clear concept, especially in hill slope. The study is more complex in the real field rather than in the artificial system. The result in artificial systems developed and experimental observations may give good results. So, therefore, this study is aimed at modeling in the laboratory as artificial hill slope flows which include saturation excess surface runoff flows. The physical processes along with runoff generation depend on the factors—soil type, characteristic slope geometry, and initial soil conditions at the commencement of rainfall. The mechanisms involved in runoff formation process have been simulated successfully to compute hydrograph for hilly terrain and groundwater table development in highly permeable soil tested by kinematic storage model theory. The model represents the hill slope as a rectangular storage element of length 2.02 m, depth 0.15 m and width 1m With an impermeable bed making an angle of 10 degrees with the horizontal. The storage element is composed of two moisture zones: an unsaturated zone and a saturated zone. The result obtained is seemed good adjustment to the theory of hill slope model given by Nm Shakya, 1995. Aslo, the moisture profile variation in mixed sand profile was found immediately after the rainfall event. The result obtained shows that the timing and distribution of moisture over the depth where the maximum moisture content is 0.4 in mid of the depth which is more than in surface having a moisture level of 0.37.展开更多
This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power...This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.展开更多
While the need for understanding the effects of topographical factors on forest structure and function is well recognized,comprehensive studies are scarce.This study evaluates the effect of slope aspect and slope posi...While the need for understanding the effects of topographical factors on forest structure and function is well recognized,comprehensive studies are scarce.This study evaluates the effect of slope aspect and slope position on water relations and forest attributes across six forest types occurring between 400 m and 2600 m altitude in the Central Himalaya(27°-38°N).We found that predawn tree water potential and soil water potential were generally higher on moist north slope aspect(-0.78±0.05 MPa and-3.34±0.18 MPa,respectively)than dry south slope aspect(-0.82±0.18 MPa and-3.77±0.18 MPa,respectively).Across six different forests,these values were higher at hill base(-0.71±0.06 MPa and-2.77±0.19 MPa,tree predawn water potential and soil water potential,respectively)than other topographical positions.The favorable effect of north aspect and hill base was also observed in maintaining soil water and tree water potential during the dry season.Vegetation attributes,such as species richness,unique species and plant density were also generally higher on north slope and hill base than southern aspect and lowest at hill top.Across forest types,the hill base provided shelter to 46 unique species,compared to 16-18 at the other positions,thus emphasizing its importance as refugia for species to survive climate change induced perturbations.The favorable conditions of hill base position not only contribute to increase in alpha diversity,but also to extended species distributional range.展开更多
文摘Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sheet(EAIS) to its south. Whereas, in Larsemann Hills area the northern and north-western boundary is coastal area and EAIS in the southern part,exhibiting polar lowland between the marine and continental glacial ecosystems. Physico-chemical parameters of water samples from different lakes of both of these two distinct locations are quite contrasting and have indicated influence of lithology, weathering, evaporation and precipitation. The lake water chemistry in Larsemann Hills area is mainly governed by the lithology of the area while Schirmacher lakes exhibit influence of precipitation and rock composition. All major ions of lake waters indicate balanced ionic concentrations. The atmospheric precipitation has significantly modified the ionic distributions in the lakes and channels. Carbonation is the main proton supplying geochemical reactions involved in the rock weathering and this is an important mechanism which controls the hydrochemistry. The lake water hydrochemistry differs widely not only between two distant periglacial zones but also within a short distance of a single periglacial entity, indicating influence of territorial climate over hydrochemistry.
基金Sponsored by National Natural Science Foundation of China(51778641).
文摘Gangue hill is the associated accumulation landscape of long-term coal mining.There are a large number of gangue hills left in coal mining cities,which not only causes ecological damage but also affects the urban environment,thus becoming the focus of urban landscape transformation of coal mining cities.With the increase of people’s demand for ecological leisure,it has become the first choice to transform gangue hill and its surrounding areas into community parks.From the perspective of urban space and landscape system,as a huge regeneration landform in the city and a unique landscape in the mining area,gangue hill not only needs to be afforested,but also needs to be connected with mining heritages and landscape nodes in the city to form the interaction between“scenery”and“view”,so as to form an integrated mining cultural landscape system at the urban level.On the basis of this concept,taking the gangue hill of Zhongxing in Zaozhuang City as an example,this paper quantitatively analyzes the best landscape construction site in the gangue hill via viewshed analysis in GIS.Through this method,the gangue hill and Zhongxing mining heritage are closely combined,so as to establish the interactive relationship between“scenery”and“view”.It can guide the planning and design of sightseeing route and footpath system,and also provide a technical support for the design of community parks transformed from gangue hills.
文摘Water scarcity has always been one of the most important obstacles in the process of agricultural development in arid and low-rainfall climates. In farming, the water quality also plays an important role;as the poor quality of water can be one of the limiting factors in this sector that in addition to the agricultural problems has also caused soil problems. In this paper, we introduce and study an indigenous method of water conservation and soil protection in the east of Iran termed as “water-colouring” and the role of geomorphologic features of marl hills in one of the rivers located in the southern slopes of the Joghtay Mountain (Kalateh-Sadat Watershed). In this study, field observation, sampling and analysis of water and sediment, physicochemical experiments, SPSS software for statistical analysis and satellite images have been used to produce digital models. Finally, the effects of muddy water and clear water have been compared in terms of chemical quality and productivity of agricultural land. The results show that the method of water-colouring is the best indigenous-economical method for moisture retention and regeneration of the agricultural land soil. Given the statistical reasons and studying the other researches in this field, water-colouring causes change texture and soil composition, fertility of agricultural land and reduce the losses due to evaporation and infiltration.
文摘A study was conducted in Kaptai reservoir, one of the largest man-made freshwater lakes of South-east Asia, to determine present status of water quality and its suitability for fishing and other uses. Water samplings were from middle part of the reservoir at 0.2 and 0.8 fractional depths at five different locations from upstream to downstream viz. Burburichara, Maichchari, Subolong, Basanthakum, and Rangamati. Water analyses show that concentrations of NO3-N, K+ and total P, and suspended solid at all the sampling stations were beyond the recommended values for fish culture. Concentrations of Na^+, Ca^2+, Mg^2+, SO4^2-, Cl^-, total dissolved solid (TDS), dissolved oxygen (DO) and chemical oxygen demand (COD) were within the standards for aquaculture. Concentrations of NO3-N, SO4^2-, K+ and total P showed no definite trend with depths, locations as well as rainy and dry seasons. Water pH, conductivity, Na^+ and HCO3- contents were lower in rainy season, and DO and COD higher at almost all the locations in both the depths, compared with dry season. Total solids and concentrations of TDS, DO, COD, Ca^2+, Mg^2+ and Na^+ were higher in upstream and decreased gradually towards downstream in the reservoir. Concentrations of DO and Ca2+ and pH were higher and Mg2+ less at 0.2-fractional depth than those at 0.8-fractional depth at almost all the locations. The reservoir is in mesotrophic condition containing high concentration of NO3-N and total P, in alarming status with the presence of excessive suspended solids from urban pollution around the town. It is necessary to adopt measures for protecting water quality in the reservoir due to such deteriorations.
文摘Abstract: We report the effects of shifting cultivation on water quality in 16 creeks investigated once in 2007 and twice in 2008 in 16 apparently similar small neighboring watersheds, each of 3 to 5 ha, at four locations around Barkal sub-district under Rangamati District of Chittagong Hill Tracts in Bangladesh. Concentrations of 5042- and K+, and pH in creek water were lower, and NO3-N and Na+ concentrations were higher in shifting-cultivation land compared to land with either plantation or natu- ral forest or a combination of these cover types. Shifting cultivation effects on some water quality parameters were not significant due to change in land cover of the watershed between two sampling periods either through introduction of planted tree species or naturally regenerated vegetation. Conductivity and concentrations of HCO3- PO43-, Ca2-- and Mg2+ in creek water showed no definite trend between shifting cultivation and the other land cover types. At one area near the Forest Range Office of Barkal, creek water pH was 5.8 under land cover with a com- bination of shifting cultivation and plantation. At this area Na~ concentra- tion in shitting-cultivation land ranged from 32.33 to 33.00 mg-L" and in vegetated area from 25.00 to 30.50 mg.L-1 in 2007. At another area, Chaliatali Chara, SO42 concentration in a shifting-cultivation watershed ranged from 4.46 to 10.51 mg-L-1, lower than in a vegetated watershed that ranged from 11.69 to 19.98 mg.L-1 in 2007. S042-concentration in this shifting-cultivation area ranged from 1.28 to 1.37 mg.L^-1 and in the vegetated area from 1.37 to 3.50 mg-L^-1 in 2008.
文摘In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.
文摘Aiming at the complex flowing environment including the buried hill of Metamorphite, the active bottom water and the fracture at Budate Reservoir within Beir Depression of the Hailar Basin, combining the laboratory studies and based on analysis of its drive mechanism, field wells’ parameters were used to analyze the effects of different conditions of the fractured metamorphic reservoir with bottom water on its law of wa-ter-cut variation and the waterflooding efficiency. The results show that for the Budate buried hill reservoir with bottom water, the gravity should be taken into consideration to determine reasonable perforation ratio and production pressure difference. And because of the acid sensitivity of the buried hill reservoir, application of proper clay stabilizer will enhance the field oil recovery to a satisfactory extent.
文摘The flowing water was collected from very small creeks and seepage water from small dug holes at three different areas,viz.Manikchari,Ghagra and Muralipara in Rangamati district of Chittagong Hill Tracts,Bangladesh to investigate the impact of the existing varied land covers on water quality.Chemical analyses shows that flowing creek water from either mature mixed plantation or young gamar(Gmelina arborea) plantation had significantly(p〈0.05) higher pH value,SO4^2-and Ca^2+ concentrations,and significantly lower Na+ concentration at Manikchari,compared to natural vegetation and plantation in combination.In flowing creek water of Ghagra,the concentrations of SO4^2-and K+,conductivity and total dissolved solids from watershed of 8-year-old teak(Tectona grandis) plantation were significantly higher and the concentrations of HCO3^-,NO3^-and PO4^3-were significantly lower,compared to those of watershed of degraded natural vegetation.At Muralipara,flowing creek water from natural vegetation and shifting cultivated land in combination showed significantly higher concentrations of HCO3^-,NO3^-,Na+,K+,Ca^2+ and Mg^2+,and conductivity and total dissolved solids than seepage water as well as tube well water installed in shifting cultivated area alone.
文摘Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.
文摘Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.
文摘Study of the groundwater table development and runoff generation is one of the most important parts of hydrology to develop a clear concept, especially in hill slope. The study is more complex in the real field rather than in the artificial system. The result in artificial systems developed and experimental observations may give good results. So, therefore, this study is aimed at modeling in the laboratory as artificial hill slope flows which include saturation excess surface runoff flows. The physical processes along with runoff generation depend on the factors—soil type, characteristic slope geometry, and initial soil conditions at the commencement of rainfall. The mechanisms involved in runoff formation process have been simulated successfully to compute hydrograph for hilly terrain and groundwater table development in highly permeable soil tested by kinematic storage model theory. The model represents the hill slope as a rectangular storage element of length 2.02 m, depth 0.15 m and width 1m With an impermeable bed making an angle of 10 degrees with the horizontal. The storage element is composed of two moisture zones: an unsaturated zone and a saturated zone. The result obtained is seemed good adjustment to the theory of hill slope model given by Nm Shakya, 1995. Aslo, the moisture profile variation in mixed sand profile was found immediately after the rainfall event. The result obtained shows that the timing and distribution of moisture over the depth where the maximum moisture content is 0.4 in mid of the depth which is more than in surface having a moisture level of 0.37.
文摘This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.
基金Department of Botany,Dolphin(PG)Institute of Bio-medical and Natural SciencesDepartment of Botany,DSB Campus,Kumaun University for liberal supportDepartment of Forestry and Environmental Science,DSB Campus,Kumaun University for the liberal support。
文摘While the need for understanding the effects of topographical factors on forest structure and function is well recognized,comprehensive studies are scarce.This study evaluates the effect of slope aspect and slope position on water relations and forest attributes across six forest types occurring between 400 m and 2600 m altitude in the Central Himalaya(27°-38°N).We found that predawn tree water potential and soil water potential were generally higher on moist north slope aspect(-0.78±0.05 MPa and-3.34±0.18 MPa,respectively)than dry south slope aspect(-0.82±0.18 MPa and-3.77±0.18 MPa,respectively).Across six different forests,these values were higher at hill base(-0.71±0.06 MPa and-2.77±0.19 MPa,tree predawn water potential and soil water potential,respectively)than other topographical positions.The favorable effect of north aspect and hill base was also observed in maintaining soil water and tree water potential during the dry season.Vegetation attributes,such as species richness,unique species and plant density were also generally higher on north slope and hill base than southern aspect and lowest at hill top.Across forest types,the hill base provided shelter to 46 unique species,compared to 16-18 at the other positions,thus emphasizing its importance as refugia for species to survive climate change induced perturbations.The favorable conditions of hill base position not only contribute to increase in alpha diversity,but also to extended species distributional range.