为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
BACKGROUND Whether hyperbaric oxygen therapy(HBOT)can cause paradoxical herniation is still unclear.CASE SUMMARY A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradua...BACKGROUND Whether hyperbaric oxygen therapy(HBOT)can cause paradoxical herniation is still unclear.CASE SUMMARY A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradually regained consciousness after surgery.HBOT was administered 22 d after surgery due to speech impairment.Paradoxical herniation appeared on the second day after treatment,and the patient’s condition worsened after receiving mannitol treatment at the rehabilitation hospital.After timely skull repair,the paradoxical herniation was resolved,and the patient regained consciousness and had a good recovery as observed at the follow-up visit.CONCLUSION Paradoxical herniation is rare and may be caused by HBOT.However,the underlying mechanism is unknown,and the understanding of this phenomenon is insufficient.The use of mannitol may worsen this condition.Timely skull repair can treat paradoxical herniation and prevent serious complications.展开更多
Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradictio...Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradiction between localhidden-state model and quantum mechanics than the usual inequality-based method.In this work,we present a generalized EPR steering paradox,which predicts a contradictory equality“2Q=(1+δ)C”(0≤δ<1)given by the quantum(Q)and classical(C)theories.For any N-qubit state in which the conditional state of the steered party is pure,we test the paradox through a two-setting steering protocol,and find that the state is steerable if some specific measurement requirements are satisfied.Moreover,our construction also enlightens the building of EPR steering inequality,which may contribute to some schemes for typical quantum teleportation and quantum key distributions.展开更多
光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐...光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法。首先,采集历史气象数据和光伏电网运行数据,应用大数据分析领域的密度峰值聚类算法进行划分处理,再筛选相似日数据输入长短期记忆网络中,预测出未来光伏发电的功率变化;然后,依托逐步惯性控制思想,设计包含短时超发、转速恢复等多个阶段的电网调频控制策略,将模糊自适应比例-积分-微分(proportion-integration-differentiation,PID)控制器融入常规Smith预估计器,从而升级得到优化版的Smith预估计器;最后,在不受被控模型变化影响的情况下,依据预估补偿原理完成逐步惯性调频控制,并应用麻雀搜索算法求解出最优控制参数。实验结果表明:该控制方法实施后,光伏电网运行过程中最大RoCoF仅为0.086 Hz/s,有效降低了对模型精度的依赖性,保证了电力系统的稳定运行。展开更多
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。
文摘BACKGROUND Whether hyperbaric oxygen therapy(HBOT)can cause paradoxical herniation is still unclear.CASE SUMMARY A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradually regained consciousness after surgery.HBOT was administered 22 d after surgery due to speech impairment.Paradoxical herniation appeared on the second day after treatment,and the patient’s condition worsened after receiving mannitol treatment at the rehabilitation hospital.After timely skull repair,the paradoxical herniation was resolved,and the patient regained consciousness and had a good recovery as observed at the follow-up visit.CONCLUSION Paradoxical herniation is rare and may be caused by HBOT.However,the underlying mechanism is unknown,and the understanding of this phenomenon is insufficient.The use of mannitol may worsen this condition.Timely skull repair can treat paradoxical herniation and prevent serious complications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275136 and 12075001)the 111 Project(Grant No.B23045)the Nankai Zhide Foundation.
文摘Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories,among which the Einstein–Podolsky–Rosen(EPR)steering paradox offers a sharper criterion for the contradiction between localhidden-state model and quantum mechanics than the usual inequality-based method.In this work,we present a generalized EPR steering paradox,which predicts a contradictory equality“2Q=(1+δ)C”(0≤δ<1)given by the quantum(Q)and classical(C)theories.For any N-qubit state in which the conditional state of the steered party is pure,we test the paradox through a two-setting steering protocol,and find that the state is steerable if some specific measurement requirements are satisfied.Moreover,our construction also enlightens the building of EPR steering inequality,which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
文摘光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法。首先,采集历史气象数据和光伏电网运行数据,应用大数据分析领域的密度峰值聚类算法进行划分处理,再筛选相似日数据输入长短期记忆网络中,预测出未来光伏发电的功率变化;然后,依托逐步惯性控制思想,设计包含短时超发、转速恢复等多个阶段的电网调频控制策略,将模糊自适应比例-积分-微分(proportion-integration-differentiation,PID)控制器融入常规Smith预估计器,从而升级得到优化版的Smith预估计器;最后,在不受被控模型变化影响的情况下,依据预估补偿原理完成逐步惯性调频控制,并应用麻雀搜索算法求解出最优控制参数。实验结果表明:该控制方法实施后,光伏电网运行过程中最大RoCoF仅为0.086 Hz/s,有效降低了对模型精度的依赖性,保证了电力系统的稳定运行。