Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
The genetic based Dual Instinct Theory is determined by evolutionary history. Aggression is required for survival and sex for propagation of species. Aggressive and sexual drive derivatives with their corresponding de...The genetic based Dual Instinct Theory is determined by evolutionary history. Aggression is required for survival and sex for propagation of species. Aggressive and sexual drive derivatives with their corresponding defence mechanisms are combined with biologically based stages of infant/child development and the functional entity of Structural Theory. This model of human nature is the applied to the diagnostic categories of DSM-5-TR. Objectives: To follow the innate Dual Instinct Theory from life to death and through Artificial Intelligence;connect it with biological stages of development of the Structural Theory and illustrate its manifestations in DSM-5-TR classifications. Method: Review of selected published literature. Applying the principle of focus and cognition of informed clinical observation of innate drive derivatives in conjunction with The Structural Theory. Both theories are functional entities with no structures involved. Sigmund Freud’s biologically based stages of development;oral, anal, genital pubic, adult, and geriatric along with a variety of unconscious, automatic, and persistent defense mechanisms are selectively folded into diagnosis listed in the manual.展开更多
Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the meth...Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.展开更多
CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the struct...CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.展开更多
The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state ...Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid.The uncertain parameters mainly exist in the form of intervals.This method requires a lot of calculation and is often difficult to achieve efficiently.In order to solve this problem,this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive uncertainty.Based on the non-probabilistic reliability index method,the extreme value of the limit state function is obtained using the properties of Bernstein polynomials,thus avoiding the need for a lot of sampling to solve the reliability analysis problem.The method is applied to numerical examples and engineering applications such as experiments,and the results show that the method has higher computational efficiency and accuracy than the traditional linear approximation method,especially for some reliability problems with higher nonlinearity.Moreover,this method can effectively improve the reliability of results and reduce the cost of calculation in practical engineering problems.展开更多
Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be...Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be an unknown matter which is many times the known visible and dark matter. In this study, the solution to the dark matter mystery of spiral galaxies is a four-dimensional mass in the space of four distance dimensions, coordinates: x,y,z,x', in which x' is the fourth distance dimension. The four-dimensional mass is a black hole, and it generates the main gravitation field of the galaxy. This mysterious black hole is located in the fourth dimension at the distance x' = X'. The rotational speed distribution curves of the galaxy NGC 3198 have been presented in Ref. [2]. The speed distribution curve of the galactic halo in that publication corresponds to the speed distribution curve of the four-dimensional black hole in this study. In order to find out how well this four-dimensional model functions, the speed distribution curve of the four-dimensional black hole was calculated, and it was compared with the halo curve of Ref. [2]. The conclusion was that the calculated speed distribution curve of the black hole was a good match to the halo curve of Ref. [2]. Furthermore, the rotational speed distribution curves of the four-dimensional black hole were calculated by using different values of the reduced distance X', which yielded at the distance X' = 0 a black hole of radius R = 7.7 × 10<sup>17</sup> m. By using the relativistic Lorentz transformation, it was shown in this study that a star falling into the four-dimensional black hole remains rotating it at near speed of light, and cannot fall into the actual black hole.展开更多
Mining important nodes in the complex network should not only consider the core nodes, but also consider the locations of the nodes in the network. Despite many researches on discovering important nodes, the importanc...Mining important nodes in the complex network should not only consider the core nodes, but also consider the locations of the nodes in the network. Despite many researches on discovering important nodes, the importance of nodes in the structural holes is still ignored easily. Therefore, this paper proposes a method of local centrality measurement based on structural holes, which evaluates the nodes importance both by direct and indirect constraints caused by the lack of structural holes around the nodes. In this method, the attributes and locations of the nodes and their first-order and second-order neighbors are taken into account simultaneously. Deliberate attack simulation is carried out through selective deletion in a certain proportion of network nodes. Calculating the decreased ratio of network efficiency is to quantitatively describe the importance of nodes in before-and-after attacks. Experiments indicate that this method has more advantages to mine important nodes compared to clustering coefficient and k-shell decomposition method. And it is suitable for the quantitative analysis of the nodes importance in large scale networks.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ...The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.展开更多
Carbon nanotube(CNT)networks enable CNTs to be used as building blocks for synthesizing novel advanced materials,thus taking full advantage of the superior properties of individual CNTs.Multiscale analyses have to be ...Carbon nanotube(CNT)networks enable CNTs to be used as building blocks for synthesizing novel advanced materials,thus taking full advantage of the superior properties of individual CNTs.Multiscale analyses have to be adopted to study the load transfer mechanisms of CNT networks from the atomic scale to the macroscopic scale due to the huge computational cost.Among them,fully resolved structural features include the graphitic honeycomb lattice(atomic),inter-tube stacking(nano)and assembly(meso)of CNTs.On an atomic scale,the elastic properties,ultimate stresses,and failure strains of individual CNTs with distinct chiralities and radii are obtained under various loading conditions by molecular mechanics.The dependence of the cohesive energies on spacing distances,crossing angles,size and edge effects between two CNTs is analyzed through continuum modeling in nanoscale.The mesoscale models,which neglect the atomic structures of individual CNTs but retain geometrical information about the shape of CNTs and their assembly into a network,have been developed to study the multi-level mechanism of material deformation and microstructural evolution in CNT networks under stretching,from elastic elongation,strengthening to damage and failure.This paper summarizes the multiscale theories mentioned above,which should provide insight into the optimal assembling of CNT network materials for elevated mechanical performance.展开更多
The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concret...The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.展开更多
Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In t...Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.展开更多
This research aims to integrate Bekenstein’s bound and Landauer’s principle, providing a unified framework to understand the limits of information and energy in physical systems. By combining these principles, we ex...This research aims to integrate Bekenstein’s bound and Landauer’s principle, providing a unified framework to understand the limits of information and energy in physical systems. By combining these principles, we explore the implications for black hole thermodynamics, astrophysics, astronomy, information theory, and the search for new laws of nature. The result includes an estimation of the number of bits stored in a black hole (less than 1.4 × 10<sup>30</sup> bits/m<sup>3</sup>), enhancing our understanding of information storage in extreme gravitational environments. This integration offers valuable insights into the fundamental nature of information and energy, impacting scientific advancements in multiple disciplines.展开更多
The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 pr...The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.展开更多
During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determ...During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.展开更多
Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional soft...Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional software measurement methods have been unable to effectively measure this large-scale software. Therefore, trustworthy measurement gives an accurate measurement to these emerging features, providing valuable perspectives and different research dimensions to understand software systems. The paper introduces the complex network theory to software measurement methods and proposes a statistical measurement methodology. First we study the basic parameters of the complex network, and then introduce two new measurement parameters: structural holes, matching coefficient.展开更多
It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down wi...It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down with infinite curvature or gravitation. In accordance to the Unruh effect, one of the most surprizing predictions of quantum field theory, however, it is found from this study that such singularity cannot be actually formed because it violates the law of energy conservation. The total Unruh radiation energy of the size-less singularity is shown to be infinite, much greater than that the collapsing matter can generate. All the energies of the collapsing matter including the gravitational potential energy, deducted, are far below the Unruh radiation energy, increased, for the collapsing matter to form the singularity. The collapsing matter actually formed is shown to be not a size-less singular point but a small sphere with a finite radius, which is found to be dependent of the mass of the singularity sphere, approximately proportional to the square root of the mass. The radius of the singularity sphere cannot be zero, unless the mass also approaches to zero. The result obtained from this study not only provides us a quantum solution to the problem of black hole singularity, but also leads to profound implications to the spacetime and cosmology. The Unruh effect excludes a black hole to form a size-less singularity, which has a finite mass but infinite density, curvature, and Unruh radiation energy. A point-like or size-less singularity can only be massless and naked.展开更多
Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s...Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
文摘The genetic based Dual Instinct Theory is determined by evolutionary history. Aggression is required for survival and sex for propagation of species. Aggressive and sexual drive derivatives with their corresponding defence mechanisms are combined with biologically based stages of infant/child development and the functional entity of Structural Theory. This model of human nature is the applied to the diagnostic categories of DSM-5-TR. Objectives: To follow the innate Dual Instinct Theory from life to death and through Artificial Intelligence;connect it with biological stages of development of the Structural Theory and illustrate its manifestations in DSM-5-TR classifications. Method: Review of selected published literature. Applying the principle of focus and cognition of informed clinical observation of innate drive derivatives in conjunction with The Structural Theory. Both theories are functional entities with no structures involved. Sigmund Freud’s biologically based stages of development;oral, anal, genital pubic, adult, and geriatric along with a variety of unconscious, automatic, and persistent defense mechanisms are selectively folded into diagnosis listed in the manual.
基金the Beijing Natural Science Foundation(Grant Nos.JQ24010 and Z220020)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.52273279)Project supported by the Electron Microscopy Laboratory of Peking University,China for the use of Nion U-HERMES200 scanning transmission electron microscopy.We thank Materials Processing and Analysis Center,Peking University,for assistance with TEM characterization.The electron microscopy work was through a user project at Center of Oak Ridge National Laboratory(ORNL)for Nanophase Materials Sciences(CNMS),which is a DOE Office of Science User Facility.
文摘Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
基金supported by the National Natural Science Foundation of China (No. 52174297)Fundamental Research Funds for the Central Universities (No. FRF-TP-20026A1)+1 种基金the special grade of China Postdoctoral Science Foundation (No. 2021T140050)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
文摘Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid.The uncertain parameters mainly exist in the form of intervals.This method requires a lot of calculation and is often difficult to achieve efficiently.In order to solve this problem,this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive uncertainty.Based on the non-probabilistic reliability index method,the extreme value of the limit state function is obtained using the properties of Bernstein polynomials,thus avoiding the need for a lot of sampling to solve the reliability analysis problem.The method is applied to numerical examples and engineering applications such as experiments,and the results show that the method has higher computational efficiency and accuracy than the traditional linear approximation method,especially for some reliability problems with higher nonlinearity.Moreover,this method can effectively improve the reliability of results and reduce the cost of calculation in practical engineering problems.
文摘Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be an unknown matter which is many times the known visible and dark matter. In this study, the solution to the dark matter mystery of spiral galaxies is a four-dimensional mass in the space of four distance dimensions, coordinates: x,y,z,x', in which x' is the fourth distance dimension. The four-dimensional mass is a black hole, and it generates the main gravitation field of the galaxy. This mysterious black hole is located in the fourth dimension at the distance x' = X'. The rotational speed distribution curves of the galaxy NGC 3198 have been presented in Ref. [2]. The speed distribution curve of the galactic halo in that publication corresponds to the speed distribution curve of the four-dimensional black hole in this study. In order to find out how well this four-dimensional model functions, the speed distribution curve of the four-dimensional black hole was calculated, and it was compared with the halo curve of Ref. [2]. The conclusion was that the calculated speed distribution curve of the black hole was a good match to the halo curve of Ref. [2]. Furthermore, the rotational speed distribution curves of the four-dimensional black hole were calculated by using different values of the reduced distance X', which yielded at the distance X' = 0 a black hole of radius R = 7.7 × 10<sup>17</sup> m. By using the relativistic Lorentz transformation, it was shown in this study that a star falling into the four-dimensional black hole remains rotating it at near speed of light, and cannot fall into the actual black hole.
基金The work was supported by The National Natural Science Foundation of China (Nos. 61402126, 61073043, 61370083).
文摘Mining important nodes in the complex network should not only consider the core nodes, but also consider the locations of the nodes in the network. Despite many researches on discovering important nodes, the importance of nodes in the structural holes is still ignored easily. Therefore, this paper proposes a method of local centrality measurement based on structural holes, which evaluates the nodes importance both by direct and indirect constraints caused by the lack of structural holes around the nodes. In this method, the attributes and locations of the nodes and their first-order and second-order neighbors are taken into account simultaneously. Deliberate attack simulation is carried out through selective deletion in a certain proportion of network nodes. Calculating the decreased ratio of network efficiency is to quantitatively describe the importance of nodes in before-and-after attacks. Experiments indicate that this method has more advantages to mine important nodes compared to clustering coefficient and k-shell decomposition method. And it is suitable for the quantitative analysis of the nodes importance in large scale networks.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
文摘The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.
基金Supported by National Natural Science Foundation of China(Grant Nos.11972171,11572140)Sixth Phase of Jiangsu Province“333 High Level Talent Training Project”Second Level Talents,111 Project(Grant No.B18027)+3 种基金Natural Science Foundation of Jiangsu Province(Grant No.BK20180031)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV201909)Fundamental Research Funds for the Central Universities(Grant No.JUSRP22002)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_1861).
文摘Carbon nanotube(CNT)networks enable CNTs to be used as building blocks for synthesizing novel advanced materials,thus taking full advantage of the superior properties of individual CNTs.Multiscale analyses have to be adopted to study the load transfer mechanisms of CNT networks from the atomic scale to the macroscopic scale due to the huge computational cost.Among them,fully resolved structural features include the graphitic honeycomb lattice(atomic),inter-tube stacking(nano)and assembly(meso)of CNTs.On an atomic scale,the elastic properties,ultimate stresses,and failure strains of individual CNTs with distinct chiralities and radii are obtained under various loading conditions by molecular mechanics.The dependence of the cohesive energies on spacing distances,crossing angles,size and edge effects between two CNTs is analyzed through continuum modeling in nanoscale.The mesoscale models,which neglect the atomic structures of individual CNTs but retain geometrical information about the shape of CNTs and their assembly into a network,have been developed to study the multi-level mechanism of material deformation and microstructural evolution in CNT networks under stretching,from elastic elongation,strengthening to damage and failure.This paper summarizes the multiscale theories mentioned above,which should provide insight into the optimal assembling of CNT network materials for elevated mechanical performance.
基金supported by the National Natural Science Foundation of China Project 51868058,52068058Inner Mongolia Natural Science Foundation 2018MS05011Inner Mongolia“Grassland Talent”CYYC5039.
文摘The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.
文摘Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.
文摘This research aims to integrate Bekenstein’s bound and Landauer’s principle, providing a unified framework to understand the limits of information and energy in physical systems. By combining these principles, we explore the implications for black hole thermodynamics, astrophysics, astronomy, information theory, and the search for new laws of nature. The result includes an estimation of the number of bits stored in a black hole (less than 1.4 × 10<sup>30</sup> bits/m<sup>3</sup>), enhancing our understanding of information storage in extreme gravitational environments. This integration offers valuable insights into the fundamental nature of information and energy, impacting scientific advancements in multiple disciplines.
基金the National Natural Science Foundation of China(No.20737001 and 20477018)
文摘The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.
文摘Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional software measurement methods have been unable to effectively measure this large-scale software. Therefore, trustworthy measurement gives an accurate measurement to these emerging features, providing valuable perspectives and different research dimensions to understand software systems. The paper introduces the complex network theory to software measurement methods and proposes a statistical measurement methodology. First we study the basic parameters of the complex network, and then introduce two new measurement parameters: structural holes, matching coefficient.
文摘It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down with infinite curvature or gravitation. In accordance to the Unruh effect, one of the most surprizing predictions of quantum field theory, however, it is found from this study that such singularity cannot be actually formed because it violates the law of energy conservation. The total Unruh radiation energy of the size-less singularity is shown to be infinite, much greater than that the collapsing matter can generate. All the energies of the collapsing matter including the gravitational potential energy, deducted, are far below the Unruh radiation energy, increased, for the collapsing matter to form the singularity. The collapsing matter actually formed is shown to be not a size-less singular point but a small sphere with a finite radius, which is found to be dependent of the mass of the singularity sphere, approximately proportional to the square root of the mass. The radius of the singularity sphere cannot be zero, unless the mass also approaches to zero. The result obtained from this study not only provides us a quantum solution to the problem of black hole singularity, but also leads to profound implications to the spacetime and cosmology. The Unruh effect excludes a black hole to form a size-less singularity, which has a finite mass but infinite density, curvature, and Unruh radiation energy. A point-like or size-less singularity can only be massless and naked.
基金supported by the National Natural Science Foundation of China(Grants Nos.51978150 and 52050410334)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grants No.SJCX23_0069)the Fundamental Research Funds for the Central Universities.
文摘Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.