Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso...Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.展开更多
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar...The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.展开更多
Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resist...Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resistance in japonica rice as affected by carbohydrate components, especially its related arrangement in culm tissue and response to top-dressing nitrogen(N) fertilizer. Field experiments were conducted in Danyang County, Jiangsu Province, China, by using two japonica rice varieties Wuyunjing 23(lodging-resistance variety) and W3668(lodging-susceptible variety) with three top-dressing N fertilizer rates(0, 135 and 270 kg N ha^(-1)) in 2013 and 2014. Lodging related physical parameters, morphological characteristics and stem carbohydrate components were investigated at 30 d after full heading stage. Results showed that with increasing N fertilizer rates, the lodging rate and lodging index increased rapidly primarily due to significant reduction of breaking strength in two japonica rice varieties. Correlation analysis revealed that breaking strength was significantly and positively correlated with bending stress, but negatively correlated with section modulus, except for significant correlation at W3668 in 2014. Higher stem plumpness status and structural carbohydrate contents significantly enhanced stem stiffness, despite of lower non-structural carbohydrate. With higher N fertilizer rate, the culm wall thickness was almost identical, and culm diameter increased slightly. The structural carbohydrates, especially for lignin content in culm, reduced significantly under high N rate. Further histochemical staining analysis revealed that high N treatments decreased the lignin deposition rapidly in the sclerenchyma cells of mechanical tissue, large vascular bundle and small vascular bundle region, which were consistent with reduction of bending stress, especially for W3668 and thus, resulted in poor stem strength and higher lodging index. These results suggested that structural carbohydrate plays a vital role for improving stem strength in japonica rice. N rate decreased lodging resistance primarily due to poor stem stiffness, by reducing structural carbohydrate content and lignin deposition in the secondary cell wall of lower internode culm tissue.展开更多
We report on the case of middle-aged right-handed woman with central pontine myelinolysis (CPM) revealed by high resolution structural T2-weighted FLAIR MRI imaging. There was a general flattening of Wechsler Adult In...We report on the case of middle-aged right-handed woman with central pontine myelinolysis (CPM) revealed by high resolution structural T2-weighted FLAIR MRI imaging. There was a general flattening of Wechsler Adult Intelligence Scale—Fourth Edition subtest scores which were 1 standard deviation below expected values. In contrast Wechsler Memory Scale—Fourth Edition visual and auditory memory scores remained within the normal range. Verbal working memory appeared mildly impaired while nonverbal working memory was not. Scores on the Advanced Clinical Solution’s Social Perception battery were all in the normal range as were academic skills measured by the Wide Range Achievement Test—Fourth Edition. Performance was impaired on the Delis-Kaplan Executive Function System’s counterpart of the Trail-Making Test: Part B. Similarly, on the Draw-A-Person Test there was a discrepancy in that our patient’s standard score was 76 compared to her estimated premorbid FSIQ in the average range. She also displayed bilateral motor coordination slowing on the Finger Tapping task collectively suggesting damage to pontine motor tracts. The Minnesota Multiphasic Personality Inventory—Second Edition—Restructured Form profile was consistent with a diagnosis of severe anxiety and depression perhaps due to damage to serotoninergic neural tracts originating within the central pons. Finally, the patient displayed severe sleep disturbances and other signs of reticular activating formation injury. CPM may constitute a unique means of studying reversible subcortical lesions in the central pons in otherwise healthy subjects with benign illness. To our knowledge this is among the first patients with CPM without the usual risk factors for the disorder and who was otherwise healthy. Knowledge of the etiology and neuropsychology of such patients might aid in understanding the interaction of the fronto-ponto-cerebellar tracts in executive functions and motor programming.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru...Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The ...Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification.展开更多
The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks r...The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks remains a concern.This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the decreased rank attack in both static andmobilenetwork environments.We employ the Random Direction Mobility Model(RDM)for mobile scenarios within the Cooja simulator.Our systematic evaluation focuses on critical performance metrics,including Packet Delivery Ratio(PDR),Average End to End Delay(AE2ED),throughput,Expected Transmission Count(ETX),and Average Power Consumption(APC).Our findings illuminate the disruptive impact of this attack on the routing hierarchy,resulting in decreased PDR and throughput,increased AE2ED,ETX,and APC.These results underscore the urgent need for robust security measures to protect RPL-based IoT networks.Furthermore,our study emphasizes the exacerbated impact of the attack in mobile scenarios,highlighting the evolving security requirements of IoT networks.展开更多
Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted s...Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted studies on the formations present in the locality of Guintéguéla. It is located in the northwest of Côte d’Ivoire in the bafing region. The aim of this work was to determine the petrographic and structural characteristics of the formations of the area. The methodology began with documentation and then followed petrography and structural analysis work on the macroscopic and microscopic levels. We observed six groups of rocks: granitoids, amphibolites, orthogneiss, quartzites (poor and rich in magnetites), volcano-sediments and filonian rocks. Metamorphism is of amphibolite to granulite facies. However, volcano-sediments must be associated with the green schist facies. With regard to the structural, structures and microstructures such as foliation;fractures;sigmoidal figures reveal that the studied area was affected by ductile and also brittle tectonics whose main directions are oriented along the shear corridor, so N-S to NNW-SSE.展开更多
The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral ga...The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral galaxies in order to determine how our Galaxy measures up to the Local Universe.For our comparison,we use the galaxy structural parameters gathered from a variety of literature sources in the optical and near-infrared wave bands.We compare the scale length,scale height,and disk flatness for both the thin and thick disks,the thick-to-thin disk mass ratio,the bulge-to-total luminosity ratio,and the mean pitch angle of the Milky Way’s spiral arms to those in other galaxies.We conclude that many of the Milky Way’s structural parameters are largely ordinary and typical of spiral galaxies in the Local Universe,though the Galaxy’s thick disk appears to be appreciably thinner and less extended than expected from zoom-in cosmological simulations of Milky Way-mass galaxies with a significant contribution of galaxy mergers involving satellite galaxies.展开更多
The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety ...The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding the water-rock interaction and stability control of mudstone slope.展开更多
Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) S...Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).展开更多
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
文摘Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
基金supported by the National Natural Science Foundation of China(Grant No.52105577)the Natural Science Foundation of Zhejiang Province(Grant Nos.LQ22E050001 and LQ21E080007)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J088 and 2023J376)the Ningbo Yongjiang Talent Introduction Program(Grant No.2021A-137-G).
文摘The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.
基金Funding was provided by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD16B14,2012BAD20B05,2012BAD04B08)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resistance in japonica rice as affected by carbohydrate components, especially its related arrangement in culm tissue and response to top-dressing nitrogen(N) fertilizer. Field experiments were conducted in Danyang County, Jiangsu Province, China, by using two japonica rice varieties Wuyunjing 23(lodging-resistance variety) and W3668(lodging-susceptible variety) with three top-dressing N fertilizer rates(0, 135 and 270 kg N ha^(-1)) in 2013 and 2014. Lodging related physical parameters, morphological characteristics and stem carbohydrate components were investigated at 30 d after full heading stage. Results showed that with increasing N fertilizer rates, the lodging rate and lodging index increased rapidly primarily due to significant reduction of breaking strength in two japonica rice varieties. Correlation analysis revealed that breaking strength was significantly and positively correlated with bending stress, but negatively correlated with section modulus, except for significant correlation at W3668 in 2014. Higher stem plumpness status and structural carbohydrate contents significantly enhanced stem stiffness, despite of lower non-structural carbohydrate. With higher N fertilizer rate, the culm wall thickness was almost identical, and culm diameter increased slightly. The structural carbohydrates, especially for lignin content in culm, reduced significantly under high N rate. Further histochemical staining analysis revealed that high N treatments decreased the lignin deposition rapidly in the sclerenchyma cells of mechanical tissue, large vascular bundle and small vascular bundle region, which were consistent with reduction of bending stress, especially for W3668 and thus, resulted in poor stem strength and higher lodging index. These results suggested that structural carbohydrate plays a vital role for improving stem strength in japonica rice. N rate decreased lodging resistance primarily due to poor stem stiffness, by reducing structural carbohydrate content and lignin deposition in the secondary cell wall of lower internode culm tissue.
文摘We report on the case of middle-aged right-handed woman with central pontine myelinolysis (CPM) revealed by high resolution structural T2-weighted FLAIR MRI imaging. There was a general flattening of Wechsler Adult Intelligence Scale—Fourth Edition subtest scores which were 1 standard deviation below expected values. In contrast Wechsler Memory Scale—Fourth Edition visual and auditory memory scores remained within the normal range. Verbal working memory appeared mildly impaired while nonverbal working memory was not. Scores on the Advanced Clinical Solution’s Social Perception battery were all in the normal range as were academic skills measured by the Wide Range Achievement Test—Fourth Edition. Performance was impaired on the Delis-Kaplan Executive Function System’s counterpart of the Trail-Making Test: Part B. Similarly, on the Draw-A-Person Test there was a discrepancy in that our patient’s standard score was 76 compared to her estimated premorbid FSIQ in the average range. She also displayed bilateral motor coordination slowing on the Finger Tapping task collectively suggesting damage to pontine motor tracts. The Minnesota Multiphasic Personality Inventory—Second Edition—Restructured Form profile was consistent with a diagnosis of severe anxiety and depression perhaps due to damage to serotoninergic neural tracts originating within the central pons. Finally, the patient displayed severe sleep disturbances and other signs of reticular activating formation injury. CPM may constitute a unique means of studying reversible subcortical lesions in the central pons in otherwise healthy subjects with benign illness. To our knowledge this is among the first patients with CPM without the usual risk factors for the disorder and who was otherwise healthy. Knowledge of the etiology and neuropsychology of such patients might aid in understanding the interaction of the fronto-ponto-cerebellar tracts in executive functions and motor programming.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金funded by the National Natural Science Foundation of China(No.51873004).
文摘Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
基金supported by key technology research and development project of ShanXi province(20201102019)Natural science foundation of Shanxi Province(201901D111167)+2 种基金Shanxi Scholarship Council of China(2020-117)JCKY2018408B003Magnesium alloy high-performance XXX multi-directional extrusion technologyXX supporting scientific research project(xxxx-2019-021).
文摘Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification.
文摘The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks remains a concern.This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the decreased rank attack in both static andmobilenetwork environments.We employ the Random Direction Mobility Model(RDM)for mobile scenarios within the Cooja simulator.Our systematic evaluation focuses on critical performance metrics,including Packet Delivery Ratio(PDR),Average End to End Delay(AE2ED),throughput,Expected Transmission Count(ETX),and Average Power Consumption(APC).Our findings illuminate the disruptive impact of this attack on the routing hierarchy,resulting in decreased PDR and throughput,increased AE2ED,ETX,and APC.These results underscore the urgent need for robust security measures to protect RPL-based IoT networks.Furthermore,our study emphasizes the exacerbated impact of the attack in mobile scenarios,highlighting the evolving security requirements of IoT networks.
文摘Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted studies on the formations present in the locality of Guintéguéla. It is located in the northwest of Côte d’Ivoire in the bafing region. The aim of this work was to determine the petrographic and structural characteristics of the formations of the area. The methodology began with documentation and then followed petrography and structural analysis work on the macroscopic and microscopic levels. We observed six groups of rocks: granitoids, amphibolites, orthogneiss, quartzites (poor and rich in magnetites), volcano-sediments and filonian rocks. Metamorphism is of amphibolite to granulite facies. However, volcano-sediments must be associated with the green schist facies. With regard to the structural, structures and microstructures such as foliation;fractures;sigmoidal figures reveal that the studied area was affected by ductile and also brittle tectonics whose main directions are oriented along the shear corridor, so N-S to NNW-SSE.
文摘The structural parameters of a galaxy can be used to gain insight into its formation and evolution history.In this paper,we strive to compare the Milky Way’s structural parameters to other,primarily edge-on,spiral galaxies in order to determine how our Galaxy measures up to the Local Universe.For our comparison,we use the galaxy structural parameters gathered from a variety of literature sources in the optical and near-infrared wave bands.We compare the scale length,scale height,and disk flatness for both the thin and thick disks,the thick-to-thin disk mass ratio,the bulge-to-total luminosity ratio,and the mean pitch angle of the Milky Way’s spiral arms to those in other galaxies.We conclude that many of the Milky Way’s structural parameters are largely ordinary and typical of spiral galaxies in the Local Universe,though the Galaxy’s thick disk appears to be appreciably thinner and less extended than expected from zoom-in cosmological simulations of Milky Way-mass galaxies with a significant contribution of galaxy mergers involving satellite galaxies.
基金We gratefully acknowledge the financial support by the National Key Research and Development Program of China(2022YFC2904100)the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing(SKLCRSM20KFA11).
文摘The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding the water-rock interaction and stability control of mudstone slope.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102 and 2022YFA1602603)the National Natural Science Foundation of China (Grant Nos. 12374049 and 12174395)+2 种基金the China Postdoctoral Science Foundation (Grant No. 2023M743542)Hefei Institutes of Physical Science,Chinese Academy of Sciences the Director’s Fundation of (Grant No. YZJJ2024QN41)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08)。
文摘Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).