目的:了解金黄色葡萄球菌肠毒素A(SEA)联合PML-RARα融合多肽体外诱导正常人外周血T细胞活化TCRζ链基因表达情况。方法:利用T细胞液体培养法分别与正常人外周血淋巴细胞加入PML-RARα融合多肽、SEA和SEA联合PML-RARα多肽诱导培养T细胞...目的:了解金黄色葡萄球菌肠毒素A(SEA)联合PML-RARα融合多肽体外诱导正常人外周血T细胞活化TCRζ链基因表达情况。方法:利用T细胞液体培养法分别与正常人外周血淋巴细胞加入PML-RARα融合多肽、SEA和SEA联合PML-RARα多肽诱导培养T细胞,其中SEA刺激包括培养初始或培养第5天加入SEA两组(PS、PSI),并设空白对照组(不加多肽及SEA)。分别收集各组培养20 d后细胞提取mRNA并合成cDNA,采用SYBR G reenⅠ荧光定量PCR和相对定量检测TCRζ链在不同组别T淋巴细胞中的表达情况,以β2微球蛋白基因(β2M)作为内参,根据相对定量公式:2-△△C t分析TCRζ链表达差异。结果:与空白组相比,联合诱导组在培养初始加入SEA及第5天加入SEA的培养T细胞中TCRζ链表达上升,而单独SEA诱导组的TCRζ链表达下降。结论:超抗原SEA联合PML-RARα多肽体外诱导T细胞可使TCRζ链基因表达水平升高,有望为研制急性早幼粒细胞白血病疫苗提供新的切入点。展开更多
The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level t...The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level trend maps the geographical variability. In the Northern Hemisphere (15°-64°N), the sea level rise is very fast at the mid-latitude (20°-40°N) but much slower at the high-latitude, for example, only 0.5 mm a^-1 in the latitude band 40°-50°N. In the Southern Hemisphere, the sea level shows high rising rate both in mid-latitude and high-latitude areas, for example, 5.1 mm a^-1 in the band 40°- 50°S. The global thermosteric sea level (TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a^-1 and accounted for more than 40% of the global T/P sea level rise. The contributions of the TSL distribution are not spatially uniform; for instance, the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere (15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean, which contributes more than 60% of the global TSL. The sea level change trend in tropical ocean is mainly caused by the thermosteric effect, which is different from the case of seasonal variability in this area. The TSL variability dominates the T/P sea level rise in the North Atlantic, but it is small in other areas, and shows negative trend at the high-latitude area (40°-60°N, and 50°-60°S). The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-l and striking inter-annual and decadal variability with period of 20 years. In the past 60 years, the Atlantic TSL was rising continuously and remarkably, contributing 38% to the global TSL rising. The TSL in the Pacific and Indian Ocean rose with significant in- ter-annual and decadal variability. The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend. Among the three oceans, the first mode of the Pacific TSL presented the ENSO mode; there was relatively steady rising trend in the Atlantic Ocean, and no dominant mode in the Indian Ocean.展开更多
Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we c...Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we classify the upper layer water of the NSCS into six water masses: diluted water(D), surface water(SS),the SCS subsurface water mass(U_S), the Pacific Ocean subsurface water mass(U_P), surface-subsurface mixed water(SU) and subsurface-intermediate mixed water(UI). A new stacked stereogram is used to illustrate the water mass distribution, and to examine the source and the distribution of U_P, combining with the sea surface height data and geostrophic current field. The results show that water mass U_P exists in all four seasons with the maximum range in spring and the minimum range in summer. In spring and winter, the U_P intrudes into the Luzon Strait and the southwest of Taiwan Island via the northern Luzon Strait in the form of nonlinear Rossby eddies, and forms a high temperature and high salinity zone east of the Dongsha Islands. In summer, the U_P is sporadically distributed in the study area. In autumn, the U_P is located in the upper 200 m layer east of Hainan Island.展开更多
Molecular biomarkers(e.g.,isoprenoid glycerol dialkyl glycerol tetraethers(iGDGTs)and proxies,such as di-unsaturated to tri-unsaturated highly branched isoprenoids(D/T)ratio,total organic carbon,δ^(13)C and ice-rafte...Molecular biomarkers(e.g.,isoprenoid glycerol dialkyl glycerol tetraethers(iGDGTs)and proxies,such as di-unsaturated to tri-unsaturated highly branched isoprenoids(D/T)ratio,total organic carbon,δ^(13)C and ice-rafted debris(IRD))were used to reconstruct the dominant phytoplankton(diatoms,dinoflagellates and coccolithophores),phytoplankton and zooplankton productivity,biological pump structure,and archaea assemblage(Euryarchaeota and Crenarchaeota)from a marine sediment core(D5-6)dated with^(210)Pb(1922–2012).We characterized the environmental response to sea ice variations/global warming off the eastern Antarctic Peninsula.The results showed that(1)the biomarkers brassicasterol(average=519.79 ng·g^(-1)),dinosterol(average=129.68 ng·g^(-1))and C37 alkenones(average=40.53 ng·g^(-1))reconstructed phytoplankton(average=690.00 ng·g^(-1))and zooplankton(cholesterol average=669.25 ng·g^(-1))productivity.The relative contribution to productivity by different phytoplankton groups was diatoms>dinoflagellates>coccolithophores.This is consistent with field surveys showing that diatoms dominate the phytoplankton in waters adjacent to the Antarctic Peninsula.(2)The relative abundances of different highly branched isoprenoids reflected the contributions of sea ice algae and open water phytoplankton(D/T=1.2–30.15).Phytoplankton productivity and sea ice showed a good linear relationship with a negative correlation,indicating that more open water during periods of warming and reduced sea ice cover led to an enhanced biological pump.(3)Over the past 100 years,phytoplankton productivity and zooplankton biomass increased.This trend was particularly evident in the last 50 years,corresponding to increased global warming,and showed a negative correlation with IRD and D/T.This suggests that with decreasing sea ice coverage in a warming climate,diatom biomass greatly increased.Coccolithophore/diatom values and the ratio of C37 alkenones to total phytoplankton productivity decreased,indicating the proportion of coccolithophores in the phytoplankton community decreased.The reduction in coccolithophores changes the phytoplankton assemblage and affects the overall efficiency of the biological pump and carbon storage.(4)The results also showed that the abundance of iGDGTs and archaea phyla(Euryarchaeota and Crenarchaeota)showed consistent changes over the past 100 years in response to global warming.Since 1972,trends in archaea,phytoplankton and zooplankton showed variations but a consistent decline.Whether their response to the changing climate off the Antarctic Peninsula involves interactions and influence among different marine biological groups remains an open question.As a result of global warming and reductions in Antarctic sea ice,the relative effectiveness of the Antarctic biological pump can significantly affect global ocean carbon storage.展开更多
The study area has located on Atrak river basin in the Iran-Turkmenistan border zone that is the greatest river on the southeastern margin of Caspian Sea. The study area was divided into 56 sub-basins and then T facto...The study area has located on Atrak river basin in the Iran-Turkmenistan border zone that is the greatest river on the southeastern margin of Caspian Sea. The study area was divided into 56 sub-basins and then T factors were calculated for all streams of the Atrak river. T factor is a geomorphic index for tilting identification by active tectonics. Our results show that, there are low, moderate and high relative tectonic activities levels. Low relative tectonic activities level has been found in sub-basins No. 1, 2, 3, 4, 10, 23, 25, 41 and 51, moderate relative tectonic activities level has been found in sub-basins No. 5, 6, 7, 8, 13, 14, 17, 18, 19, 20, 21, 24, 28, 29, 30, 31, 32, 34, 35, 39, 40, 42, 43, 46, 47,48, 49, 50, 52, 53, 55 and 56 and high relative tectonic activities level has been found in sub-basins No. 9, 11, 12, 15, 16, 22, 26, 27, 33, 36, 37, 38, 44, 45 and 54. Also, most part of the study area has got moderate tectonic activity that it is compatible with its tectonic setting on the Kopetdagh belt in Iran. It is shows that some sub-basins on the western parts of study area that river has got west-east trending, are more active. But, some sub-basins on the eastern parts of study area that river has got northwest-southeast trending, are less active. It means that migration direction of the most streams are toward north and south and the major faults and folds in the western parts of study area caused river tilting be perpendicular to structural trend. This variation along the most important river on the northeastern part of Iran was analyzed for the first time in this research.展开更多
文摘目的:了解金黄色葡萄球菌肠毒素A(SEA)联合PML-RARα融合多肽体外诱导正常人外周血T细胞活化TCRζ链基因表达情况。方法:利用T细胞液体培养法分别与正常人外周血淋巴细胞加入PML-RARα融合多肽、SEA和SEA联合PML-RARα多肽诱导培养T细胞,其中SEA刺激包括培养初始或培养第5天加入SEA两组(PS、PSI),并设空白对照组(不加多肽及SEA)。分别收集各组培养20 d后细胞提取mRNA并合成cDNA,采用SYBR G reenⅠ荧光定量PCR和相对定量检测TCRζ链在不同组别T淋巴细胞中的表达情况,以β2微球蛋白基因(β2M)作为内参,根据相对定量公式:2-△△C t分析TCRζ链表达差异。结果:与空白组相比,联合诱导组在培养初始加入SEA及第5天加入SEA的培养T细胞中TCRζ链表达上升,而单独SEA诱导组的TCRζ链表达下降。结论:超抗原SEA联合PML-RARα多肽体外诱导T细胞可使TCRζ链基因表达水平升高,有望为研制急性早幼粒细胞白血病疫苗提供新的切入点。
基金supported by the National Basic Research Program of China (No 2007CB411807)the NSFC project (Nos 40976006 and 40906002)+1 种基金the National Key Technology R&D Program (No 2007BAC03A06-06)the project of Key Laboratory of Coastal Disasters and Defence (No 200802)
文摘The sea level derived from TOPEX/Poseidon (T/P) altimetry data shows prominent long term trend and inter-annual variability. The global mean sea level rising rate during 1993-2003 was 2.9mm a^-1. The T/P sea level trend maps the geographical variability. In the Northern Hemisphere (15°-64°N), the sea level rise is very fast at the mid-latitude (20°-40°N) but much slower at the high-latitude, for example, only 0.5 mm a^-1 in the latitude band 40°-50°N. In the Southern Hemisphere, the sea level shows high rising rate both in mid-latitude and high-latitude areas, for example, 5.1 mm a^-1 in the band 40°- 50°S. The global thermosteric sea level (TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a^-1 and accounted for more than 40% of the global T/P sea level rise. The contributions of the TSL distribution are not spatially uniform; for instance, the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere (15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean, which contributes more than 60% of the global TSL. The sea level change trend in tropical ocean is mainly caused by the thermosteric effect, which is different from the case of seasonal variability in this area. The TSL variability dominates the T/P sea level rise in the North Atlantic, but it is small in other areas, and shows negative trend at the high-latitude area (40°-60°N, and 50°-60°S). The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-l and striking inter-annual and decadal variability with period of 20 years. In the past 60 years, the Atlantic TSL was rising continuously and remarkably, contributing 38% to the global TSL rising. The TSL in the Pacific and Indian Ocean rose with significant in- ter-annual and decadal variability. The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend. Among the three oceans, the first mode of the Pacific TSL presented the ENSO mode; there was relatively steady rising trend in the Atlantic Ocean, and no dominant mode in the Indian Ocean.
基金The National Natural Science Foundation of China under contract No.41776027the National Basic Research Program of China under contract Nos 2015CB954004 and 2009CB421208the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW1808
文摘Using the fuzzy cluster analysis and the temperature-salinity(T-S) similarity number analysis of cruise conductivity-temperature-depth(CTD) data in the upper layer(0–300 m) of the northern South China Sea(NSCS), we classify the upper layer water of the NSCS into six water masses: diluted water(D), surface water(SS),the SCS subsurface water mass(U_S), the Pacific Ocean subsurface water mass(U_P), surface-subsurface mixed water(SU) and subsurface-intermediate mixed water(UI). A new stacked stereogram is used to illustrate the water mass distribution, and to examine the source and the distribution of U_P, combining with the sea surface height data and geostrophic current field. The results show that water mass U_P exists in all four seasons with the maximum range in spring and the minimum range in summer. In spring and winter, the U_P intrudes into the Luzon Strait and the southwest of Taiwan Island via the northern Luzon Strait in the form of nonlinear Rossby eddies, and forms a high temperature and high salinity zone east of the Dongsha Islands. In summer, the U_P is sporadically distributed in the study area. In autumn, the U_P is located in the upper 200 m layer east of Hainan Island.
基金the National Natural Science Foundation of China(Grant nos.42076243,41976227 and 41576186)Chinese Polar Environment Comprehensive Investigation&Assessment Programs.
文摘Molecular biomarkers(e.g.,isoprenoid glycerol dialkyl glycerol tetraethers(iGDGTs)and proxies,such as di-unsaturated to tri-unsaturated highly branched isoprenoids(D/T)ratio,total organic carbon,δ^(13)C and ice-rafted debris(IRD))were used to reconstruct the dominant phytoplankton(diatoms,dinoflagellates and coccolithophores),phytoplankton and zooplankton productivity,biological pump structure,and archaea assemblage(Euryarchaeota and Crenarchaeota)from a marine sediment core(D5-6)dated with^(210)Pb(1922–2012).We characterized the environmental response to sea ice variations/global warming off the eastern Antarctic Peninsula.The results showed that(1)the biomarkers brassicasterol(average=519.79 ng·g^(-1)),dinosterol(average=129.68 ng·g^(-1))and C37 alkenones(average=40.53 ng·g^(-1))reconstructed phytoplankton(average=690.00 ng·g^(-1))and zooplankton(cholesterol average=669.25 ng·g^(-1))productivity.The relative contribution to productivity by different phytoplankton groups was diatoms>dinoflagellates>coccolithophores.This is consistent with field surveys showing that diatoms dominate the phytoplankton in waters adjacent to the Antarctic Peninsula.(2)The relative abundances of different highly branched isoprenoids reflected the contributions of sea ice algae and open water phytoplankton(D/T=1.2–30.15).Phytoplankton productivity and sea ice showed a good linear relationship with a negative correlation,indicating that more open water during periods of warming and reduced sea ice cover led to an enhanced biological pump.(3)Over the past 100 years,phytoplankton productivity and zooplankton biomass increased.This trend was particularly evident in the last 50 years,corresponding to increased global warming,and showed a negative correlation with IRD and D/T.This suggests that with decreasing sea ice coverage in a warming climate,diatom biomass greatly increased.Coccolithophore/diatom values and the ratio of C37 alkenones to total phytoplankton productivity decreased,indicating the proportion of coccolithophores in the phytoplankton community decreased.The reduction in coccolithophores changes the phytoplankton assemblage and affects the overall efficiency of the biological pump and carbon storage.(4)The results also showed that the abundance of iGDGTs and archaea phyla(Euryarchaeota and Crenarchaeota)showed consistent changes over the past 100 years in response to global warming.Since 1972,trends in archaea,phytoplankton and zooplankton showed variations but a consistent decline.Whether their response to the changing climate off the Antarctic Peninsula involves interactions and influence among different marine biological groups remains an open question.As a result of global warming and reductions in Antarctic sea ice,the relative effectiveness of the Antarctic biological pump can significantly affect global ocean carbon storage.
文摘The study area has located on Atrak river basin in the Iran-Turkmenistan border zone that is the greatest river on the southeastern margin of Caspian Sea. The study area was divided into 56 sub-basins and then T factors were calculated for all streams of the Atrak river. T factor is a geomorphic index for tilting identification by active tectonics. Our results show that, there are low, moderate and high relative tectonic activities levels. Low relative tectonic activities level has been found in sub-basins No. 1, 2, 3, 4, 10, 23, 25, 41 and 51, moderate relative tectonic activities level has been found in sub-basins No. 5, 6, 7, 8, 13, 14, 17, 18, 19, 20, 21, 24, 28, 29, 30, 31, 32, 34, 35, 39, 40, 42, 43, 46, 47,48, 49, 50, 52, 53, 55 and 56 and high relative tectonic activities level has been found in sub-basins No. 9, 11, 12, 15, 16, 22, 26, 27, 33, 36, 37, 38, 44, 45 and 54. Also, most part of the study area has got moderate tectonic activity that it is compatible with its tectonic setting on the Kopetdagh belt in Iran. It is shows that some sub-basins on the western parts of study area that river has got west-east trending, are more active. But, some sub-basins on the eastern parts of study area that river has got northwest-southeast trending, are less active. It means that migration direction of the most streams are toward north and south and the major faults and folds in the western parts of study area caused river tilting be perpendicular to structural trend. This variation along the most important river on the northeastern part of Iran was analyzed for the first time in this research.