Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with e...The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.展开更多
In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomp...In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomposite comprised of conductive polypyrrole and vanadium pentoxide(PPy/V2O5) was synthesized by polymerization of pyrrole monomer(Py) in the hollow-microspherical V2O5 host.This novel hybrid was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tested as the cathode material for lithium-ion batteries(LIB) by galvanostatic cell cycling and electrochemical impedance spectroscopy(EIS).The hollow-spherical polypyrrole/vanadium oxide(HS-PPy/V2O5) composites,in which PPy molecules are intercalated between the layers of V2O5,exhibit slight reduced capacity and substantially improve cyclability and electrochemical activity compared with the pure HS-V2O5.展开更多
To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametri...To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.展开更多
Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion k...Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion kinetics. An SnS_2@carbon hollow nanospheres(SnS_2@C) has been designed and fabricated via a facile solvothermal route, followed by an annealing treatment. The SnS_2@C hybrid possesses an ideal hollow structure, rich active sites, a large electrode/electrolyte interface, a shortened ion transport pathway, and, importantly, a bu er space for volume change, generated from the repeated insertion/extraction of sodium ions. These merits lead to the significant reinforcement of structural integrity during electrochemical reactions and the improvement in sodium storage properties, with a high specific reversible capacity of 626.8 mAh g^(-1) after 200 cycles at a current density of 0.2 A g^(-1) and superior high-rate performance(304.4 mAh g^(-1) at 5 A g^(-1)).展开更多
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co...As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.展开更多
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wett...Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carder and the other employed unmodified membrane segment as biofilm carder. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10: 1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4^+-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4^+-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.展开更多
Flower-like hierarchical three-dimensional Ni Fe layered double hydroxides hollow microspheres(3D NiFe-LDH HMS),as one kind of novel non-noble metal electrocatalysts,have been fabricated in a templatefree route for wa...Flower-like hierarchical three-dimensional Ni Fe layered double hydroxides hollow microspheres(3D NiFe-LDH HMS),as one kind of novel non-noble metal electrocatalysts,have been fabricated in a templatefree route for water oxidation.Both of the concentration of ammonium fluoride and the reaction time are adjusted to obtain a series of Ni Fe-LDH microspheres,with different internal structures from massive to hollow generated during the hydrothermal treatment,which improve the electrocatalytic activity of the Ni Fe-LDH catalysts towards the evolution reaction of oxygen.The optimized Ni Fe-LDH-0.4M HMS show the excellent OER performance in alkaline electrolyte withη=290 mV@10 mA cm^-2,and a Tafel slope of 51 mV dec-1,which outperforms the benchmark RuO2 catalyst.The possible reason is attributed to the more exposure of active sites,and fast ion transport resulting from the hierarchical hollow structure.展开更多
The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability i...The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles.展开更多
TiO2 microspheres containing carbon have been synthesized viaa one-pot hydrothermal process using CTAB as the mesoporous template and nanoparticle stabilizer and Ti(SO4)2and sucrose as titanium and carbon precursors,r...TiO2 microspheres containing carbon have been synthesized viaa one-pot hydrothermal process using CTAB as the mesoporous template and nanoparticle stabilizer and Ti(SO4)2and sucrose as titanium and carbon precursors,respectively. Through well designed calcinations, Ti O2 microspheres with various amounts of carbon-residue,such as core/shell C@TiO2, hollow neat H–TiO2, and hollow C/TiO2 composites, are obtained. When these microspheres are used as anode materials for lithium ion batteries, the lithium storage performance is significantly influenced by the structure and carbon-residue. With a thin shell of TiO2 nanoparticles and carbon-residue, the capacity of hollow C/TiO2 composites maintains at 143.3 m A·h·g-1at 0.5 C(83.5 m A·g-1) after 100 cycles.Moreover, after high rate charge/discharge cycles from 0.2 C to 20 C and back to 0.2 C again, the reversible capacity recovers atas high as 195.1 m A·h·g-1with respect to its initial value of 205.0 m A·h·g-1. The results of cycle voltammograms and electrochemical impedance spectroscopy further reveal that Li+insertion/extraction processes are reversible, and the diffusion coefficient of Li+in the hollow C/TiO2 composites is much higher than those of others, because the hollow structure can act as the ion-buffering reservoir and facilitate Li+transfer from both sides of the shell, and the carbon-residue in the shell improves the conductivity as well.展开更多
Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with th...Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low spe...Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.展开更多
Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocata...Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.展开更多
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i...Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.展开更多
Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facil...Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.展开更多
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent...Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.展开更多
Constructing a step-scheme heterojunction at the interface between two semiconductors is an efficient way to optimize the redox ability and accelerate the charge carrier separation of a photocatalytic system for achie...Constructing a step-scheme heterojunction at the interface between two semiconductors is an efficient way to optimize the redox ability and accelerate the charge carrier separation of a photocatalytic system for achieving high photocatalytic performance.In this study,we prepared a hierarchical ZnO@ZnS step-scheme photocatalyst by incorporating ZnS into the outer shell of hollow ZnO microspheres via a simple in situ sulfidation strategy.The ZnO@ZnS step-scheme photocatalysts had a large surface area,high light utilization capacity,and superior separation efficiency for photogenerated charge carriers.In addition,the material simulation revealed that the formation of the step-scheme heterojunction between ZnO and ZnS was due to the presence of the built-in electric field.Our study paves the way for design of high-performance photocatalysts for H_(2) production.展开更多
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金the financial support of the National Natural Science Foundation of China(52002079,22378074,22179025 and U20A20340)the Guangdong Basic and Applied Basic Research Foundation(2022A1515140085)+2 种基金the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202209)the Guangzhou Hongmian Project(HMJH-20200012)the Foshan Introducing Innovative and Entrepreneurial Teams(1920001000108)。
文摘The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.
基金Project(50574063)supported by the National Natural Science Foundation of China
文摘In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomposite comprised of conductive polypyrrole and vanadium pentoxide(PPy/V2O5) was synthesized by polymerization of pyrrole monomer(Py) in the hollow-microspherical V2O5 host.This novel hybrid was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tested as the cathode material for lithium-ion batteries(LIB) by galvanostatic cell cycling and electrochemical impedance spectroscopy(EIS).The hollow-spherical polypyrrole/vanadium oxide(HS-PPy/V2O5) composites,in which PPy molecules are intercalated between the layers of V2O5,exhibit slight reduced capacity and substantially improve cyclability and electrochemical activity compared with the pure HS-V2O5.
基金National Natural Science Foundation of China under Grant No.51178008,No.50908005National Basic Research Program of China under Grant No.2011CB013600+1 种基金the International Cooperative Project of NSFC-JST under Grant No.51021140003a Joint Research Project between the Beijing University of Technology and the University at Buffalo with Partial Support from the U.S.Federal Highway Administration under Contract No.DTFH61-07-C-00020
文摘To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.
基金the National Natural Science Foundation of China (Grant No. 21701144)the China Postdoctoral Science Foundation (Grant Nos. 2016M592303 and 2017T100536)
文摘Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion kinetics. An SnS_2@carbon hollow nanospheres(SnS_2@C) has been designed and fabricated via a facile solvothermal route, followed by an annealing treatment. The SnS_2@C hybrid possesses an ideal hollow structure, rich active sites, a large electrode/electrolyte interface, a shortened ion transport pathway, and, importantly, a bu er space for volume change, generated from the repeated insertion/extraction of sodium ions. These merits lead to the significant reinforcement of structural integrity during electrochemical reactions and the improvement in sodium storage properties, with a high specific reversible capacity of 626.8 mAh g^(-1) after 200 cycles at a current density of 0.2 A g^(-1) and superior high-rate performance(304.4 mAh g^(-1) at 5 A g^(-1)).
基金financially supported by National Natural Science Foundation of China (No. 51672083)Program of Shanghai Academic/Technology Research Leader (18XD1401400)+3 种基金Basic Research Program of Shanghai (17JC1404702)Leading talents in Shanghai in 2018The 111 project (B14018)the Fundamental Research Funds for the Central Universities (222201718002)
文摘As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.
基金Project supported by the Natural Science Foundation of Beijing(No. 2051002)the Technologies R&D Program of Beijing (No.D0205004000011)the Hi-Tech Research and Development Program(863) of China (No. 2002AA601220).
文摘Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carder and the other employed unmodified membrane segment as biofilm carder. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10: 1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4^+-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4^+-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.
基金supported by the National Natural Science Foundation of ChinaProgramme XU GuangqiProgram for Changjiang Scholars and Innovative Research Team in University (No. IRT1205)
文摘Flower-like hierarchical three-dimensional Ni Fe layered double hydroxides hollow microspheres(3D NiFe-LDH HMS),as one kind of novel non-noble metal electrocatalysts,have been fabricated in a templatefree route for water oxidation.Both of the concentration of ammonium fluoride and the reaction time are adjusted to obtain a series of Ni Fe-LDH microspheres,with different internal structures from massive to hollow generated during the hydrothermal treatment,which improve the electrocatalytic activity of the Ni Fe-LDH catalysts towards the evolution reaction of oxygen.The optimized Ni Fe-LDH-0.4M HMS show the excellent OER performance in alkaline electrolyte withη=290 mV@10 mA cm^-2,and a Tafel slope of 51 mV dec-1,which outperforms the benchmark RuO2 catalyst.The possible reason is attributed to the more exposure of active sites,and fast ion transport resulting from the hierarchical hollow structure.
基金financially supported by the Science Foundation of Sichuan Province(Grant No.2016FZ0070)the Natural Science Foundation of China(NSFC,201476145)the technical support for Materials Characterization from The Analytical and Testing Center of Sichuan University
文摘The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles.
基金Supported by the National Natural Science Foundation of China(21176066)the 111 Project of the Ministry of Education of China(B08021)the Fundamental Research Funds for the Central Universities
文摘TiO2 microspheres containing carbon have been synthesized viaa one-pot hydrothermal process using CTAB as the mesoporous template and nanoparticle stabilizer and Ti(SO4)2and sucrose as titanium and carbon precursors,respectively. Through well designed calcinations, Ti O2 microspheres with various amounts of carbon-residue,such as core/shell C@TiO2, hollow neat H–TiO2, and hollow C/TiO2 composites, are obtained. When these microspheres are used as anode materials for lithium ion batteries, the lithium storage performance is significantly influenced by the structure and carbon-residue. With a thin shell of TiO2 nanoparticles and carbon-residue, the capacity of hollow C/TiO2 composites maintains at 143.3 m A·h·g-1at 0.5 C(83.5 m A·g-1) after 100 cycles.Moreover, after high rate charge/discharge cycles from 0.2 C to 20 C and back to 0.2 C again, the reversible capacity recovers atas high as 195.1 m A·h·g-1with respect to its initial value of 205.0 m A·h·g-1. The results of cycle voltammograms and electrochemical impedance spectroscopy further reveal that Li+insertion/extraction processes are reversible, and the diffusion coefficient of Li+in the hollow C/TiO2 composites is much higher than those of others, because the hollow structure can act as the ion-buffering reservoir and facilitate Li+transfer from both sides of the shell, and the carbon-residue in the shell improves the conductivity as well.
基金supported by National Natural Science Foundation of China (No. 50676026)
文摘Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.
文摘Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly.
基金supported by the National Natural Science Foundation of China(21876069,21707054)the Six Talent Peaks Project in Jiangsu(XCL-018)the China Postdoctoral Science Foundation(2016M601744)~~
文摘Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.
基金financially supported by Beijing Natural Science Foundation(No.2192034)China Postdoctoral Science Foundation(No.2018M631335)National Key R&D Program of China(No.2018YFB0905600).
文摘Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.
文摘Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.
基金Supported by the National Natural Science Foundation of China (No.20236030).
文摘Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.
文摘Constructing a step-scheme heterojunction at the interface between two semiconductors is an efficient way to optimize the redox ability and accelerate the charge carrier separation of a photocatalytic system for achieving high photocatalytic performance.In this study,we prepared a hierarchical ZnO@ZnS step-scheme photocatalyst by incorporating ZnS into the outer shell of hollow ZnO microspheres via a simple in situ sulfidation strategy.The ZnO@ZnS step-scheme photocatalysts had a large surface area,high light utilization capacity,and superior separation efficiency for photogenerated charge carriers.In addition,the material simulation revealed that the formation of the step-scheme heterojunction between ZnO and ZnS was due to the presence of the built-in electric field.Our study paves the way for design of high-performance photocatalysts for H_(2) production.