Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) a...The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) andNearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics,focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative thatminimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting withan initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half Max routine.The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSPbenchmarks. The results indicate that HMIH consistently delivers superior performance, particularly with respectto tour cost and computational efficiency. HMIH’s tours were sometimes 16% shorter than those generated by FIHand NNH, showcasing its potential and value as a novel benchmark for TSP solutions. The study used statisticalmethods, including Friedman’s Non-parametric Test, to validate the performance of HMIH over FIH and NNH.This guarantees that the identified advantages are statistically significant and consistent in various situations. Thiscomprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for itsuse in solving TSP issues. The research shows that, in general, HMIH fared better than FIH in all cases studied,except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better thanHMIH. HMIH’s efficiency is shown by its improvements in error percentage (δ) and goodness values (g) comparedto FIH and NNH. In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had20.9%, indicating that HMIH was closer to the optimal solution. HMIH consistently showed superior performanceacross many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match tothe optimal tour costs. This study substantially contributes to combinatorial optimization by enhancing currentinsertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem. It also createsnew possibilities for progress in heuristic design and optimization methodologies.展开更多
In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ...In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.展开更多
Travelling Salesman Problem(TSP)is a discrete hybrid optimization problem considered NP-hard.TSP aims to discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point...Travelling Salesman Problem(TSP)is a discrete hybrid optimization problem considered NP-hard.TSP aims to discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point,making it the shortest route feasible.This paper employed a Farmland Fertility Algorithm(FFA)inspired by agricultural land fertility and a hyper-heuristic technique based on the Modified Choice Function(MCF).The neighborhood search operator can use this strategy to automatically select the best heuristic method formaking the best decision.Lin-Kernighan(LK)local search has been incorporated to increase the efficiency and performance of this suggested approach.71 TSPLIB datasets have been compared with different algorithms to prove the proposed algorithm’s performance and efficiency.Simulation results indicated that the proposed algorithm outperforms comparable methods of average mean computation time,average percentage deviation(PDav),and tour length.展开更多
Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The ai...Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The aims are to implement the genetic algorithm to solve these two different (nested) problems, and to get the best or optimization solutions.展开更多
A Chinese foreign ministry spokesperson on February 19 said the Spring Festival of the Year of the Dragon offers the world a window on China’s economic vibrancy,during which China sees its inbound and outbound travel...A Chinese foreign ministry spokesperson on February 19 said the Spring Festival of the Year of the Dragon offers the world a window on China’s economic vibrancy,during which China sees its inbound and outbound travels soar,with more Chinese tourists going abroad and more foreign travelers visiting China.展开更多
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金the Centre of Excellence in Mobile and e-Services,the University of Zululand,Kwadlangezwa,South Africa.
文摘The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) andNearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics,focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative thatminimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting withan initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half Max routine.The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSPbenchmarks. The results indicate that HMIH consistently delivers superior performance, particularly with respectto tour cost and computational efficiency. HMIH’s tours were sometimes 16% shorter than those generated by FIHand NNH, showcasing its potential and value as a novel benchmark for TSP solutions. The study used statisticalmethods, including Friedman’s Non-parametric Test, to validate the performance of HMIH over FIH and NNH.This guarantees that the identified advantages are statistically significant and consistent in various situations. Thiscomprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for itsuse in solving TSP issues. The research shows that, in general, HMIH fared better than FIH in all cases studied,except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better thanHMIH. HMIH’s efficiency is shown by its improvements in error percentage (δ) and goodness values (g) comparedto FIH and NNH. In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had20.9%, indicating that HMIH was closer to the optimal solution. HMIH consistently showed superior performanceacross many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match tothe optimal tour costs. This study substantially contributes to combinatorial optimization by enhancing currentinsertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem. It also createsnew possibilities for progress in heuristic design and optimization methodologies.
文摘In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.
文摘Travelling Salesman Problem(TSP)is a discrete hybrid optimization problem considered NP-hard.TSP aims to discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point,making it the shortest route feasible.This paper employed a Farmland Fertility Algorithm(FFA)inspired by agricultural land fertility and a hyper-heuristic technique based on the Modified Choice Function(MCF).The neighborhood search operator can use this strategy to automatically select the best heuristic method formaking the best decision.Lin-Kernighan(LK)local search has been incorporated to increase the efficiency and performance of this suggested approach.71 TSPLIB datasets have been compared with different algorithms to prove the proposed algorithm’s performance and efficiency.Simulation results indicated that the proposed algorithm outperforms comparable methods of average mean computation time,average percentage deviation(PDav),and tour length.
文摘Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The aims are to implement the genetic algorithm to solve these two different (nested) problems, and to get the best or optimization solutions.
文摘A Chinese foreign ministry spokesperson on February 19 said the Spring Festival of the Year of the Dragon offers the world a window on China’s economic vibrancy,during which China sees its inbound and outbound travels soar,with more Chinese tourists going abroad and more foreign travelers visiting China.