Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the tra...Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.展开更多
For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with th...For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with that of an ordinary sampled grating laser with an emission wavelength of approximately 8.6μm,when the periodicities within both the base grating and the sample grating are kept constant.Under this condition,an improvement in the continuous tuning capability of the QCL array is ensured.The ASG structure is fabricated in holographic exposure and optical photolithography,thereby enhancing its flexibility,repeatability,and cost-effectiveness.The wavelength modulation capability of the two channels of the grating is insensitive to the variations in channel size,assuming that the overall waveguide width remains constant.The output wavelength can be tailored freely within a certain range by adjusting the width of the ridge and the material of the cladding layer.展开更多
On the basis of investigation and analysis of Linpan in Chengdu Plain,in view of the ongoing reconstruction engineering of residential styles in Chengdu Plain,construction mode of Linpan in Chengdu Plain at new period...On the basis of investigation and analysis of Linpan in Chengdu Plain,in view of the ongoing reconstruction engineering of residential styles in Chengdu Plain,construction mode of Linpan in Chengdu Plain at new period had been proposed and plants had been selected in accordance with the function features of different modes. The initial study result was of certain instructive significance to the protection and development of Linpan in Chengdu Plain to some extent.展开更多
To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the chall...To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the challenges after D2 D transmission is introduced for future cellular networks, this paper deals with mode selection and resource allocation issues related with D2 D communications. First, we propose a mode selection scheme which aims at guaranteeing the transmission of cellular users and also considering the potential interference. We analyze the condition under which D2 D underlay mode should be used. Second, we answer the question of "how to effectively reuse cellular resource once underlaying mode is adopted". We further present a resource allocation scheme that focuses on minimizing overall interference as well as a power control method to improve the performance of D2 D systems. Simulation results demonstrate that system parameters greatly affect the switching condition of mode selection and probability of choosing underlay mode. Furthermore, for D2 D underlaying scenario, the proposed resource allocation algorithm guarantees the transmission of cellular users with consideration of transmission requirements of D2 D users. Hence, the proposed scheme can achieve better user experience.展开更多
Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selec...Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.展开更多
This paper proposes a mode selection scheme to improve the spectral efficiency for coordinated multi-point(CoMP) transmission with phase synchronization errors(PSE). Upper bounds of average achievable rate for differe...This paper proposes a mode selection scheme to improve the spectral efficiency for coordinated multi-point(CoMP) transmission with phase synchronization errors(PSE). Upper bounds of average achievable rate for different CoMP transmission modes, such as coordinated beamforming(CB) and joint processing(JP), are derived by random matrix theory and asymptotic mathematical approximation. According to these upper bounds, the proposed scheme switches CoMP transmission mode between CB and JP adaptively to enhance the average achievable rate. Simulation results show that these upper bounds agree well with the average achievable rates for both JP and CB, and the proposed scheme outperforms traditional single mode CoMP transmission when PSE exist.展开更多
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for...Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.展开更多
Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or...Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.展开更多
For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the ch...For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.展开更多
The development of equipment maintenance management is introduced, and equipment maintenance concept is defined. Equipment maintenance modes are classified, analyzed and compared, which merits and demerits are pointed...The development of equipment maintenance management is introduced, and equipment maintenance concept is defined. Equipment maintenance modes are classified, analyzed and compared, which merits and demerits are pointed out. At last, a decision-making frame to select equipment maintenance modes is advanced, and steps to select and implement equipment maintenance are given.展开更多
Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be imp...Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.展开更多
Within the scope of dual distribution channel(DDC)modes—ME&T-C and M-T&E-C,a game model designed for channel members was proposed.Based on this game model,the game equilibrium under both centralized and decen...Within the scope of dual distribution channel(DDC)modes—ME&T-C and M-T&E-C,a game model designed for channel members was proposed.Based on this game model,the game equilibrium under both centralized and decentralized decisionmaking situations was analyzed,the channel members' and overall revenues of two modes under the same decision-making situation are compared,and the influence of demand shift coefficient to the overall and members' revenue was also studied through example analysis.Based on the comparison and analysis of the revenue yielded from the two DDC modes,it's discovered that within a certain hypothetical range,the M-T&E-C mode seems to be a better option for the manufacturer than the ME&T-C mode.Therefore,this discovery can be served as a theoretical reference for manufacturers when choosing the optimal DDC mode in real life.展开更多
We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we ...We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.展开更多
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio...To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.展开更多
H.264 video coding standard introduces motion estimation with multiple block sizes to achieve a considerably higher coding efficiency than other video coding algorithms. However, this comes at the greatly increased co...H.264 video coding standard introduces motion estimation with multiple block sizes to achieve a considerably higher coding efficiency than other video coding algorithms. However, this comes at the greatly increased computing complexity at the encoder. In this paper, a method is proposed to eliminate some redundant coding modes that contribute very little coding gain. The simulation results show that the algorithm can remarkably decrease the complexity at the encoder while keeping satisfying coding efficiency.展开更多
This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel ro...This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel routes and travel mode choices of residents from Suzhou to Shanghai,consider different impact variables in the survey,and divide their travel lines into two travel days on weekdays due to commuting to Shanghai, and free travel to Shanghai on weekdays.The data of the survey were analyzed and analyzed,and the parameters of the established Nested Logit model were calibrated by ST AT A software.The selection model and time value of the travel route and travel mode of residents under different scenarios and different influence variables were obtained Analyze.展开更多
Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communicatio...Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communication,optical storage,and polarization imaging,require selecting the appropriate laser polarization mode and remote control of the laser properties.Here,we propose a unique plasmon-assisted method for the mode selection and remote control of microlasing using a lanthanide-based microcavity coupled with surface plasmon polaritons(SPPs)that propagate on a silver microplate.With this method,the transverse electrical(TE)mode of microlasers can be easily separated from the transverse magnetic(TM)mode.Because the SPPs excited on the silver microplate only support TM mode propagation,the reserved TE mode is resonance-enhanced in the microcavity and amplified by the local electromagnetic field.Meanwhile,lasingmode splitting can be observed under the near-field excitation of SPPs due to the coherent coupling between the microcavity and mirror microcavity modes.Benefiting from the long-distance propagation characteristics of tens of micrometers of SPPs on a silver microplate,remote excitation and control of upconversion microlasing can also be realized.These plasmon-assisted polarization mode-optional and remote-controllable upconversion microlasers have promising prospects in on-chip optoelectronic devices,encrypted optical information transmission,and high-precision sensors.展开更多
With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in ...With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.展开更多
In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense an...In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense and crack-free AZ91D components with fine equiaxed grain structure. The formation mechanism of typical pore defects(gas pore, lack-of-fusion pore and keyhole pore) and melting modes(keyhole mode and conduction mode) were systematically studied by varying the laser power and scanning speed. The morphology and volume fraction of the pores under different processing conditions were characterized. A criterion based on the depth-to-width ratio of the melt pool was established to identify different melting modes. The strength and ductility(tensile strength up to 340 MPa and uniform elongation of 8.9%)of the as deposited AZ91D are far superior to those of the casting components and are comparable to those of its wrought counterparts.The superior balance of strength and ductility of SLMed AZ91D, as well as the negligible anisotropic properties are mainly ascribed to the extremely fine equiaxed grain structure(with average grain size of ~1.2 μm), as well as the discontinuous distribution of β-Al_(12)Mg_(17) phases. It thus provides an alternative way to fabricate high-strength magnesium alloys with complex geometry.展开更多
We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber...We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.展开更多
基金supported in part by The National Natural Science Foundation of China(62071255,62171232,61771257)The Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions(20KJA510009)+3 种基金The Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(JZNY201914)The open research fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications(KFJJ20170305)The Research Fund of Nanjing University of Posts and Telecommunications(NY218012)Henan province science and technology research projects High and new technology(No.182102210106).
文摘Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.
基金Project supported by the National Basic Research Program of China (Grant No. 2021YFB3201900)in part by the National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583,61627822, and 61774150)in part by the Key Projects of the Chinese Academy of Sciences (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027,XDB43000000)
文摘For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with that of an ordinary sampled grating laser with an emission wavelength of approximately 8.6μm,when the periodicities within both the base grating and the sample grating are kept constant.Under this condition,an improvement in the continuous tuning capability of the QCL array is ensured.The ASG structure is fabricated in holographic exposure and optical photolithography,thereby enhancing its flexibility,repeatability,and cost-effectiveness.The wavelength modulation capability of the two channels of the grating is insensitive to the variations in channel size,assuming that the overall waveguide width remains constant.The output wavelength can be tailored freely within a certain range by adjusting the width of the ridge and the material of the cladding layer.
文摘On the basis of investigation and analysis of Linpan in Chengdu Plain,in view of the ongoing reconstruction engineering of residential styles in Chengdu Plain,construction mode of Linpan in Chengdu Plain at new period had been proposed and plants had been selected in accordance with the function features of different modes. The initial study result was of certain instructive significance to the protection and development of Linpan in Chengdu Plain to some extent.
基金supported by the National Natural Science Foundation of China(No.61501371)National 863 High Tech R&D Program of China(project number:2014AA01A703)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China(project number:2014ZX03001025-006)The international Exchange and Cooperation Projects of Shaanxi Province(project number:2016KW-046)
文摘To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the challenges after D2 D transmission is introduced for future cellular networks, this paper deals with mode selection and resource allocation issues related with D2 D communications. First, we propose a mode selection scheme which aims at guaranteeing the transmission of cellular users and also considering the potential interference. We analyze the condition under which D2 D underlay mode should be used. Second, we answer the question of "how to effectively reuse cellular resource once underlaying mode is adopted". We further present a resource allocation scheme that focuses on minimizing overall interference as well as a power control method to improve the performance of D2 D systems. Simulation results demonstrate that system parameters greatly affect the switching condition of mode selection and probability of choosing underlay mode. Furthermore, for D2 D underlaying scenario, the proposed resource allocation algorithm guarantees the transmission of cellular users with consideration of transmission requirements of D2 D users. Hence, the proposed scheme can achieve better user experience.
基金supported in part by Important National Science and Technology Specific Projects (Grants Nos. 2011 ZX 0300300104, 2012ZX03003012)Fundamental Research Funds for Central Universities (Grant Nos. 72125377)
文摘Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.
基金supported in part by National High Technology Research and Development Program Of China(863 Program)under Grant No.2014AA01A704National Natural Science Foundation Of China under Grant No.61101092
文摘This paper proposes a mode selection scheme to improve the spectral efficiency for coordinated multi-point(CoMP) transmission with phase synchronization errors(PSE). Upper bounds of average achievable rate for different CoMP transmission modes, such as coordinated beamforming(CB) and joint processing(JP), are derived by random matrix theory and asymptotic mathematical approximation. According to these upper bounds, the proposed scheme switches CoMP transmission mode between CB and JP adaptively to enhance the average achievable rate. Simulation results show that these upper bounds agree well with the average achievable rates for both JP and CB, and the proposed scheme outperforms traditional single mode CoMP transmission when PSE exist.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074164 and 10874110)the Shanghai Leading Academic Discipline Project,China (Grant No.S30108)+1 种基金the Science and Technology Commission of Shanghai Municipality,China (Grant No.08DZ2231100)the Innovation Foundation of Shanghai Municipal Commission of Education,China (Grant No.11YZ17)
文摘Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.
基金supported by Natural Science Foundations of China (No. 61671474)Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars (No. BK20170089)
文摘Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.
基金financial supports provided by the National Natural Science Foundation of China (No.51274202)the Fundamental Research Funds for the Central Universities (No.2013RC11)+3 种基金the Science and Technology Achievements Transformation Project of Jiangsu Province (No.BA2012068)the Natural Science Foundation of Jiangsu Province (Nos.BK20130199 and BK20131124)Ceeusro Prospective Joint Research Project of Jiangsu Province (No.BY2014028-01)Great Cultivating Special Project at China University of Mining and Technology (No.2014ZDPY16)
文摘For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.
基金This paper is sponsored by Natural Science Fund of Shenyang Municipality under Grant No.1041007104 and Doctor Fund of Liaoning Province under Grant No.L050517.
文摘The development of equipment maintenance management is introduced, and equipment maintenance concept is defined. Equipment maintenance modes are classified, analyzed and compared, which merits and demerits are pointed out. At last, a decision-making frame to select equipment maintenance modes is advanced, and steps to select and implement equipment maintenance are given.
基金supported by National Science Council under Grant No.101-2221-E-029-020-MY3
文摘Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.
基金Scientific Research and Innovation Project of Shanghai Municipal Education Commission,China(No.14ZS151)Humanities and Social Sciences Youth Fund Project of the Ministry of Education,China(No.12YJC630157)Technical Innovation Project of Shanghai Textile(Group)Co.,Ltd.,China(No.2013-zx-12)
文摘Within the scope of dual distribution channel(DDC)modes—ME&T-C and M-T&E-C,a game model designed for channel members was proposed.Based on this game model,the game equilibrium under both centralized and decentralized decisionmaking situations was analyzed,the channel members' and overall revenues of two modes under the same decision-making situation are compared,and the influence of demand shift coefficient to the overall and members' revenue was also studied through example analysis.Based on the comparison and analysis of the revenue yielded from the two DDC modes,it's discovered that within a certain hypothetical range,the M-T&E-C mode seems to be a better option for the manufacturer than the ME&T-C mode.Therefore,this discovery can be served as a theoretical reference for manufacturers when choosing the optimal DDC mode in real life.
文摘We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.
文摘To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.
文摘H.264 video coding standard introduces motion estimation with multiple block sizes to achieve a considerably higher coding efficiency than other video coding algorithms. However, this comes at the greatly increased computing complexity at the encoder. In this paper, a method is proposed to eliminate some redundant coding modes that contribute very little coding gain. The simulation results show that the algorithm can remarkably decrease the complexity at the encoder while keeping satisfying coding efficiency.
基金the National Natural Science Foundation of China (71601110)the National Research and Development Program of China (2017YFC0804900).
文摘This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel routes and travel mode choices of residents from Suzhou to Shanghai,consider different impact variables in the survey,and divide their travel lines into two travel days on weekdays due to commuting to Shanghai, and free travel to Shanghai on weekdays.The data of the survey were analyzed and analyzed,and the parameters of the established Nested Logit model were calibrated by ST AT A software.The selection model and time value of the travel route and travel mode of residents under different scenarios and different influence variables were obtained Analyze.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A6005,92150110,12074237,and 12304426)the National Key R&D Program of China(Grant Nos.2020YFA0211300 and 2021YFA1201500)+3 种基金the Natural Science Foundation of Shaanxi Province(Grant No.2024JC-JCQN-07)the Fundamental Science Foundation of Shaanxi(Grant No.22JSZ010)the Fundamental Research Funds for Central Universities(Grant Nos.GK202201012,GK202308001,and LHRCTS23065)the Xi’an Young Elite Scientists Sponsorship Program(Grant No.1203050367)
文摘Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communication,optical storage,and polarization imaging,require selecting the appropriate laser polarization mode and remote control of the laser properties.Here,we propose a unique plasmon-assisted method for the mode selection and remote control of microlasing using a lanthanide-based microcavity coupled with surface plasmon polaritons(SPPs)that propagate on a silver microplate.With this method,the transverse electrical(TE)mode of microlasers can be easily separated from the transverse magnetic(TM)mode.Because the SPPs excited on the silver microplate only support TM mode propagation,the reserved TE mode is resonance-enhanced in the microcavity and amplified by the local electromagnetic field.Meanwhile,lasingmode splitting can be observed under the near-field excitation of SPPs due to the coherent coupling between the microcavity and mirror microcavity modes.Benefiting from the long-distance propagation characteristics of tens of micrometers of SPPs on a silver microplate,remote excitation and control of upconversion microlasing can also be realized.These plasmon-assisted polarization mode-optional and remote-controllable upconversion microlasers have promising prospects in on-chip optoelectronic devices,encrypted optical information transmission,and high-precision sensors.
文摘With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.
基金the financial support from the National Natural Science Foundation of China [51805415,51922048]China Postdoctoral Science Foundation [2019M663682]+2 种基金China Postdoctoral Science Foundation [Grant number 2019M663682]Young Elite Scientists Sponsorship Program by CAST [Grant number 2021QNRC001]the fund of State Key Laboratory of Long-life High Temperature Materials (DECSKL202104)。
文摘In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense and crack-free AZ91D components with fine equiaxed grain structure. The formation mechanism of typical pore defects(gas pore, lack-of-fusion pore and keyhole pore) and melting modes(keyhole mode and conduction mode) were systematically studied by varying the laser power and scanning speed. The morphology and volume fraction of the pores under different processing conditions were characterized. A criterion based on the depth-to-width ratio of the melt pool was established to identify different melting modes. The strength and ductility(tensile strength up to 340 MPa and uniform elongation of 8.9%)of the as deposited AZ91D are far superior to those of the casting components and are comparable to those of its wrought counterparts.The superior balance of strength and ductility of SLMed AZ91D, as well as the negligible anisotropic properties are mainly ascribed to the extremely fine equiaxed grain structure(with average grain size of ~1.2 μm), as well as the discontinuous distribution of β-Al_(12)Mg_(17) phases. It thus provides an alternative way to fabricate high-strength magnesium alloys with complex geometry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750115 and 91750108)the Equipment Pre-research Project of Equipment Development Department of Central Military Commission,China(Grant No.61404140112)the Science and Technology Planning Project of Xiamen City,China(Grant No.3502Z20183003).
文摘We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.