The 474 million trips-raking in RMB 632.69 billion of tourism-related revenue-during the eight-day Spring Festival holiday indisputably signifies both the vitality of China’s economy and the huge potential of the cou...The 474 million trips-raking in RMB 632.69 billion of tourism-related revenue-during the eight-day Spring Festival holiday indisputably signifies both the vitality of China’s economy and the huge potential of the country’s domestic consumption.The figures respectively represent a 19 percent increase and a 7.7 percent growth over those for the same holiday period,prior to the COVID-19 pandemic,in 2019,according to data released by the country’s Ministry of Culture and Tourism on February 18.展开更多
The spring of 2018 was the hottest on record since 1951 over eastern China based on station observations,being 2.5°C higher than the 1961−90 mean and with more than 900 stations reaching the record spring mean te...The spring of 2018 was the hottest on record since 1951 over eastern China based on station observations,being 2.5°C higher than the 1961−90 mean and with more than 900 stations reaching the record spring mean temperature.This event exerted serious impacts in the region on agriculture,plant phenology,electricity transmission systems,and human health.In this paper,the contributions of human-induced climate change and anomalous anticyclonic circulation to this event are investigated using the newly homogenized observations and updated Met Office Hadley Centre system for attribution of extreme events,as well as CanESM2(Second Generation Canadian Earth System Model)simulations.Results indicate that both anthropogenic influences and anomalous anticyclonic circulation played significant roles in increasing the probability of the 2018 hottest spring.Quantitative estimates of the probability ratio show that anthropogenic forcing may have increased the chance of this event by ten-fold,while the anomalous circulation increased it by approximately two-fold.The persistent anomalous anticyclonic circulation located on the north side of China blocked the air with lower temperature from high latitudes into eastern China.Without anthropogenic forcing or without the anomalous circulation in northern China,the occurrence probability of the extreme warm spring is significantly reduced.展开更多
The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the o...The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.展开更多
The Ikogosi Warm Spring is a unique ecological niche in Western Nigeria with an average temperature and pH of 38°C and 5.8 respectively. It mixes with an adjacent cold spring (28°C & pH 7.6), about 100 m...The Ikogosi Warm Spring is a unique ecological niche in Western Nigeria with an average temperature and pH of 38°C and 5.8 respectively. It mixes with an adjacent cold spring (28°C & pH 7.6), about 100 meters from source, yielding a confluence body of water of 32°C and pH 7.7. To explore the bacterial community structure of this uncommon environment and to scan for potentially useful bacteria, metagenomes extracted directly from five samples (source and mid-point of warm spring;source and midpoint of cold spring, and the confluence) were analyzed. Using the MiSeq Illumina next generation sequencing protocols, the V3-V4 region of the 16S rRNA gene pool was sequenced and analyzed by QIIME (Quantitative Insights into Microbial Ecology) and R software. At least 11% (47,446) of all the sequences were unknown to any of the databases employed. Bacterial diversity and abundance at the source of both springs were extremely low, accounting for less than 0.07% of the total sequence reads at the confluence, 100 m downstream. In contrast to the highly diversified mesophilic confluence community where 21 different phyla were identified, only 4 and 5 phyla were recovered from the source-point of the warm spring and cold spring respectively. The most prevalent phyla in all samples were members of the versatile Proteobacteria (35% - 50% relative abundance), and the hardy Firmicutes (33% - 40%). Operational taxonomic units (OTUs) obtained from all the samples averaged at 1414. Temperature and pH were equally significant predictors of genomic diversity and richness, with the warm and cold spring sources having less than 5 bacteria phyla. Exiguobacterium sp. (a potential plastic degrader) and other deep rooted bacteria were found in the warm spring while the cold spring outflow contained among others such as Rubrobacter sp. and Chloroflexi sp. (which is close to the phylogenetic root of the domain Bacteria). Many taxonomically unresolved sequences could indicate the presence of potentially novel bacteria in this unique body of water and underscores the need to systematically mine these rare genetic reservoirs for biotechnological applications. Moreover, such tropical hydrothermal ecosystems could contain some unknown primitive bacteria at the origins of life.展开更多
The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea ...The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5° latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70°-90°E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH)variability caused by EIWP variation also influence the spring precipitation in China.展开更多
Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensembl...Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.展开更多
A recurring spring mesoscale eddy in the western South China Sea (SCS) is studied using remote sensing data and historical in situ observations. The feature first appears east of the central Vietnam coast in Febru- ...A recurring spring mesoscale eddy in the western South China Sea (SCS) is studied using remote sensing data and historical in situ observations. The feature first appears east of the central Vietnam coast in Febru- ary as a high sea-level anomaly, grows rapidly to a well-developed anticyclonic eddy by March, matures in April, and decays in May. Besides the warm-core feature, it also has an inherent low-salinity property, so it is named "spring mesoscale high (SMH)". Though with clear interannual variation in terms of intensity and spatial coverage, the SMH always emerges in the region between ll0~E and l14~E and between 12~N and 16~N. The formation of SMH is ascribed to the combined effects of wind forcing and releasing of po- tential energy set up by winter monsoon. In particular, the wind-stress curl plays an important role in its development, maintenance, and dissipation.展开更多
In the spring of 2021,southwestern China(SWC)experienced extreme drought,accompanied by the highest seasonal-mean temperature record since 1961.This drought event occurred in the decaying phase of a La Niña event...In the spring of 2021,southwestern China(SWC)experienced extreme drought,accompanied by the highest seasonal-mean temperature record since 1961.This drought event occurred in the decaying phase of a La Niña event with negative geopotential height anomalies over the Philippine Sea,which is distinct from the historical perspective.Historically,spring drought over SWC is often linked to El Niño and strong western North Pacific subtropical high.Here,we show that the extreme drought in the spring of 2021 may be mainly driven by the atmospheric internal variability and amplified by the warming trend.Specifically,the evaporation increase due to the high temperature accounts for about 30%of drought severity,with the contributions of its linear trend portion being nearly 20%and the interannual variability portion being about 10%.Since the sea surface temperature forcing from the tropical central and eastern Pacific played a minor role in the occurrence of drought,it is a challenge for a climate model to capture the 2021 SWC drought beyond one-month lead times.展开更多
Using the 1980-2010 winter GODAS oceanic assimilations, study is conducted of the winter heat content(HC) established in the subsurface layer(5 to 366 m in depth) over the western Pacific warm pool(WP), followed by in...Using the 1980-2010 winter GODAS oceanic assimilations, study is conducted of the winter heat content(HC) established in the subsurface layer(5 to 366 m in depth) over the western Pacific warm pool(WP), followed by investigating the HC spatiotemporal characteristics, persistence and the impacts on the climate anomalies of neighboring regions. Results are as follows: 1) the pattern of integral consistency is uncovered by the leading EOF1(PC1) mode of HC interannual variability, the year-to-year fluctuation of the time coefficients being well indicative of the interannual anomaly of the WP winter subsurface-layer thermal regime. The HC variation is bound up with El Ni觡o-Southern Oscillation, keeping pronounced autocorrelation during the following two seasons and more, with the persistence being more stable in comparison to sea surface temperature anomaly in the equatorial middle eastern Pacific; 2) the winter HC anomalies produce lasting effect on the WP thermal state in the following spring and summer and corresponding changes in the warm water volume lead to the meridional transport and vertical exchange of warm water, which exerts greater impacts upon the sea surface temperature/heat flux over the warm pool per se and neighboring regions, especially in the Philippine Sea during the posterior spring and summer; 3) the increase in the winter HC corresponds to the spring outgoing longwave radiation(OLR) decrease and richer precipitation over the waters east to the Philippine Sea and the resultant convective heating anomalies are responsible for the rise of geopotential isobaric surfaces over tropical and subtropical western North Pacific, thereby producing effect on the western Pacific subtropical high(anomaly). Subsequently, the sea-surface heat flux exchange is intensified in the warm pool, a robust anomalous cyclone shows up at lower levels, air-sea interactions are enhanced and abnormal convective heating occurs, together making the winter HC anomalies even more closely associated with the variation in the summer subtropical high. As a result, the WP winter HC can be used as an effective predictor of the variation in spring/summer western Pacific subtropical high and the strength of summer monsoon over the northwestern Pacific.展开更多
Warm compaction behaviors and their affecting factors such as compaction temperature, compaction pressure and lubricant concentration were studied. Effect of die wall lubrication on the powder’s warm compaction behav...Warm compaction behaviors and their affecting factors such as compaction temperature, compaction pressure and lubricant concentration were studied. Effect of die wall lubrication on the powder’s warm compaction behavior was also studied. The use of smaller size colloidal graphite investigated can give a higher compact density and lesser spring back effect than the use of flake graphite.展开更多
文摘The 474 million trips-raking in RMB 632.69 billion of tourism-related revenue-during the eight-day Spring Festival holiday indisputably signifies both the vitality of China’s economy and the huge potential of the country’s domestic consumption.The figures respectively represent a 19 percent increase and a 7.7 percent growth over those for the same holiday period,prior to the COVID-19 pandemic,in 2019,according to data released by the country’s Ministry of Culture and Tourism on February 18.
基金the National Key Research and Development Program of China(Grant No.2018YFC1507702)the National Natural Science Foundation of China(Grant No.41775082)+3 种基金Y.SUN was supported by the National Key Research and Development Program of China(Grant No.2016YFA0600701)the National Natural Science Foundation of China(Grant No.41790471)N.CHRISTIDIS and P.A.STOTT were supported by the Met Office Hadley Centre Climate Programme funded by BEIS,Defrathe UK−China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund,China.
文摘The spring of 2018 was the hottest on record since 1951 over eastern China based on station observations,being 2.5°C higher than the 1961−90 mean and with more than 900 stations reaching the record spring mean temperature.This event exerted serious impacts in the region on agriculture,plant phenology,electricity transmission systems,and human health.In this paper,the contributions of human-induced climate change and anomalous anticyclonic circulation to this event are investigated using the newly homogenized observations and updated Met Office Hadley Centre system for attribution of extreme events,as well as CanESM2(Second Generation Canadian Earth System Model)simulations.Results indicate that both anthropogenic influences and anomalous anticyclonic circulation played significant roles in increasing the probability of the 2018 hottest spring.Quantitative estimates of the probability ratio show that anthropogenic forcing may have increased the chance of this event by ten-fold,while the anomalous circulation increased it by approximately two-fold.The persistent anomalous anticyclonic circulation located on the north side of China blocked the air with lower temperature from high latitudes into eastern China.Without anthropogenic forcing or without the anomalous circulation in northern China,the occurrence probability of the extreme warm spring is significantly reduced.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41476002, 41490643, 41176006 and 41221063)the Fundamental Research Funds for the Central Universities (Grant No. 201503029)
文摘The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.
文摘The Ikogosi Warm Spring is a unique ecological niche in Western Nigeria with an average temperature and pH of 38°C and 5.8 respectively. It mixes with an adjacent cold spring (28°C & pH 7.6), about 100 meters from source, yielding a confluence body of water of 32°C and pH 7.7. To explore the bacterial community structure of this uncommon environment and to scan for potentially useful bacteria, metagenomes extracted directly from five samples (source and mid-point of warm spring;source and midpoint of cold spring, and the confluence) were analyzed. Using the MiSeq Illumina next generation sequencing protocols, the V3-V4 region of the 16S rRNA gene pool was sequenced and analyzed by QIIME (Quantitative Insights into Microbial Ecology) and R software. At least 11% (47,446) of all the sequences were unknown to any of the databases employed. Bacterial diversity and abundance at the source of both springs were extremely low, accounting for less than 0.07% of the total sequence reads at the confluence, 100 m downstream. In contrast to the highly diversified mesophilic confluence community where 21 different phyla were identified, only 4 and 5 phyla were recovered from the source-point of the warm spring and cold spring respectively. The most prevalent phyla in all samples were members of the versatile Proteobacteria (35% - 50% relative abundance), and the hardy Firmicutes (33% - 40%). Operational taxonomic units (OTUs) obtained from all the samples averaged at 1414. Temperature and pH were equally significant predictors of genomic diversity and richness, with the warm and cold spring sources having less than 5 bacteria phyla. Exiguobacterium sp. (a potential plastic degrader) and other deep rooted bacteria were found in the warm spring while the cold spring outflow contained among others such as Rubrobacter sp. and Chloroflexi sp. (which is close to the phylogenetic root of the domain Bacteria). Many taxonomically unresolved sequences could indicate the presence of potentially novel bacteria in this unique body of water and underscores the need to systematically mine these rare genetic reservoirs for biotechnological applications. Moreover, such tropical hydrothermal ecosystems could contain some unknown primitive bacteria at the origins of life.
基金This research is supported Sciences Foundation of China by the National Natural(No.40305009).
文摘The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5° latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70°-90°E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH)variability caused by EIWP variation also influence the spring precipitation in China.
基金sponsored by the National Basic Research Program of China(Grant Nos. 2011CB952000, 2006CB400504)the Na-tional Natural Science Foundation of China (Grant No.41005039)+1 种基金Wu was sponsored by the National Science Foundation of USA (ATM-0917743)Yan was sponsored by the National Basic Research Program of China(Grant No. 2009CB421401)
文摘Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.
基金The National Basic Research Program of China(973 Program)under contract No.2011CB403504the National Natural Science Foundation of China under contract No.41071250the Marine Science Foundation for Young Scientists of State Oceanic Administration of China under contract No.2012221
文摘A recurring spring mesoscale eddy in the western South China Sea (SCS) is studied using remote sensing data and historical in situ observations. The feature first appears east of the central Vietnam coast in Febru- ary as a high sea-level anomaly, grows rapidly to a well-developed anticyclonic eddy by March, matures in April, and decays in May. Besides the warm-core feature, it also has an inherent low-salinity property, so it is named "spring mesoscale high (SMH)". Though with clear interannual variation in terms of intensity and spatial coverage, the SMH always emerges in the region between ll0~E and l14~E and between 12~N and 16~N. The formation of SMH is ascribed to the combined effects of wind forcing and releasing of po- tential energy set up by winter monsoon. In particular, the wind-stress curl plays an important role in its development, maintenance, and dissipation.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0605004)Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)+2 种基金National Natural Science Foundations of China(Grant No.42175056)the China Meteorological Administration Innovation and Development Project(CXFZ2022J031)the Joint Open Project of KLME&CIC-FEMD,NUIST(Grant No.KLME202102).
文摘In the spring of 2021,southwestern China(SWC)experienced extreme drought,accompanied by the highest seasonal-mean temperature record since 1961.This drought event occurred in the decaying phase of a La Niña event with negative geopotential height anomalies over the Philippine Sea,which is distinct from the historical perspective.Historically,spring drought over SWC is often linked to El Niño and strong western North Pacific subtropical high.Here,we show that the extreme drought in the spring of 2021 may be mainly driven by the atmospheric internal variability and amplified by the warming trend.Specifically,the evaporation increase due to the high temperature accounts for about 30%of drought severity,with the contributions of its linear trend portion being nearly 20%and the interannual variability portion being about 10%.Since the sea surface temperature forcing from the tropical central and eastern Pacific played a minor role in the occurrence of drought,it is a challenge for a climate model to capture the 2021 SWC drought beyond one-month lead times.
基金National Key Basic Research/Development Project(2012CB417403)Public Sector(Meteorology)Special Research Foundation(GYHY201306022,GYHY201406024)+1 种基金Foundation of National Natural Sciences(41205065)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘Using the 1980-2010 winter GODAS oceanic assimilations, study is conducted of the winter heat content(HC) established in the subsurface layer(5 to 366 m in depth) over the western Pacific warm pool(WP), followed by investigating the HC spatiotemporal characteristics, persistence and the impacts on the climate anomalies of neighboring regions. Results are as follows: 1) the pattern of integral consistency is uncovered by the leading EOF1(PC1) mode of HC interannual variability, the year-to-year fluctuation of the time coefficients being well indicative of the interannual anomaly of the WP winter subsurface-layer thermal regime. The HC variation is bound up with El Ni觡o-Southern Oscillation, keeping pronounced autocorrelation during the following two seasons and more, with the persistence being more stable in comparison to sea surface temperature anomaly in the equatorial middle eastern Pacific; 2) the winter HC anomalies produce lasting effect on the WP thermal state in the following spring and summer and corresponding changes in the warm water volume lead to the meridional transport and vertical exchange of warm water, which exerts greater impacts upon the sea surface temperature/heat flux over the warm pool per se and neighboring regions, especially in the Philippine Sea during the posterior spring and summer; 3) the increase in the winter HC corresponds to the spring outgoing longwave radiation(OLR) decrease and richer precipitation over the waters east to the Philippine Sea and the resultant convective heating anomalies are responsible for the rise of geopotential isobaric surfaces over tropical and subtropical western North Pacific, thereby producing effect on the western Pacific subtropical high(anomaly). Subsequently, the sea-surface heat flux exchange is intensified in the warm pool, a robust anomalous cyclone shows up at lower levels, air-sea interactions are enhanced and abnormal convective heating occurs, together making the winter HC anomalies even more closely associated with the variation in the summer subtropical high. As a result, the WP winter HC can be used as an effective predictor of the variation in spring/summer western Pacific subtropical high and the strength of summer monsoon over the northwestern Pacific.
文摘Warm compaction behaviors and their affecting factors such as compaction temperature, compaction pressure and lubricant concentration were studied. Effect of die wall lubrication on the powder’s warm compaction behavior was also studied. The use of smaller size colloidal graphite investigated can give a higher compact density and lesser spring back effect than the use of flake graphite.