The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Mira...In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.展开更多
Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are...Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.展开更多
In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller desig...In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.展开更多
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded doma...In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).展开更多
This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz s...This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.展开更多
A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition beha...A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.展开更多
A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference sche...A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.展开更多
The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov en...The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.展开更多
In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these ...In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.展开更多
Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: ...Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.展开更多
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can gener...A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.展开更多
This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i...This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.展开更多
A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-att...A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions a...In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions are proved. At last, the existence of global attractors and its upper semicontinuous property are discussed.展开更多
A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple l...A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.展开更多
This paper introduces a four-dimensional (4D) segmented disc dynamo which possesses coexisting hidden attractors with one stable equilibrium or a line equilibrium when parameters vary. In addition, by choosing an ap...This paper introduces a four-dimensional (4D) segmented disc dynamo which possesses coexisting hidden attractors with one stable equilibrium or a line equilibrium when parameters vary. In addition, by choosing an appropriate bifurcation parameter, the paper proves that Hopf bifurcation and pitchfork bifurcation occur in the system. The ultimate bound is also estimated. Some numerical investigations are also exploited to demonstrate and visualize the corresponding theoretical results.展开更多
Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixi...Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixing with each other, so it is very difficult to identify irregular signals evolving from arbitrary initial states. Here, periodic attractors from the simple cell mapping method are further iterated by a specific Poincare map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations. The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure. From the positions and the variations of attractors in the phase space, the action mechanism of bounded noise excitation is studied in detail. Several numerical examples are employed to illustrate the present procedure. It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.展开更多
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金supported by NSFC Grant (11031003)the Fundamental Research Funds for the Central Universities+1 种基金support by Fund of excellent young teachers in Shanghai (shgcjs008)Initial Fund of SUES (A-0501-11-016)
文摘In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275053)
文摘Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.
基金supported by the NSF of China(11031003, 10871040)
文摘In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Natural Science Foundation of Zhejiang Province (Grant Nos M603217 and Y104414).
文摘In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.
文摘In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
文摘This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
基金supported by the National Natural Science Foundation of China(Grant No.51277017)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012583)the Fundamental Research Funds for the Central Universities of China(Grant No.NS2014038)
文摘A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.
基金Supported by the National Natural Science Foundation of China(10371077)
文摘A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
基金Project supported by the National Natural Science Foundation of China(No.10771139)the Ph.D. Program of Ministry of Education of China(No.200802700002)+4 种基金the Shanghai Leading Academic Discipline Project(No.S30405)the Innovation Program of Shanghai Municipal Education Commission(No.08ZZ70)the Foundation of Shanghai Talented Persons(No.049)the Leading Academic Discipline Project of Shanghai Normal University(No.DZL707)the Foundation of Shanghai Normal University(No.DYL200803)
文摘The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
文摘In this paper,we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles.These limit cycles form a layer-by-layer structure which is very unusual.Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors.Changing this new system to its forced version,we introduce a new chaotic system with an infinite number of coexisting strange attractors.We implement this system through field programmable gate arrays.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Doctorate Foundation of Henan Polytechnic University, China (Grant No 648606). Acknowledgments The author is greatly indebted to the authors of the references for their original valuable work.
文摘Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.
文摘A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.
基金supported in part by the NSF of China (10571024,10871040)the grant of Prominent Youth of Henan Province of China (0412000100)
文摘This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.
基金supported by the National Natural Science Foundation of China(11571283)supported by Natural Science Foundation of Guizhou Province
文摘A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
基金National Natural Science Foundation of China ( No. 11031003) Fund of Excellent Young Teachers in Shanghai,China( No.shgcjs008) Initial Fund of Shanghai University of Engineering Science,China( No. A-0501-11-016)
文摘In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions are proved. At last, the existence of global attractors and its upper semicontinuous property are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51177117 and 51307130)
文摘A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.
基金supported by the National Natural Science Foundation of China(Grant No.11671149)
文摘This paper introduces a four-dimensional (4D) segmented disc dynamo which possesses coexisting hidden attractors with one stable equilibrium or a line equilibrium when parameters vary. In addition, by choosing an appropriate bifurcation parameter, the paper proves that Hopf bifurcation and pitchfork bifurcation occur in the system. The ultimate bound is also estimated. Some numerical investigations are also exploited to demonstrate and visualize the corresponding theoretical results.
基金supported by the National Natural Science Foundation of China (10672140,11072213)
文摘Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixing with each other, so it is very difficult to identify irregular signals evolving from arbitrary initial states. Here, periodic attractors from the simple cell mapping method are further iterated by a specific Poincare map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations. The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure. From the positions and the variations of attractors in the phase space, the action mechanism of bounded noise excitation is studied in detail. Several numerical examples are employed to illustrate the present procedure. It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.