Developing production and operation in scales in the major grain producing areas is the direction of the paper. Seizing the opportunity of modem agriculture comprehensive reform in two plains (Songnen Plain and Sanji...Developing production and operation in scales in the major grain producing areas is the direction of the paper. Seizing the opportunity of modem agriculture comprehensive reform in two plains (Songnen Plain and Sanjiang Plain) of Heilongjiang Province and supporting to build a new type of production and management based on the big grain production householding, which plays demonstration and leading roles, have an important strategic position in improving agricultural comprehensive production capacity and ensuring national food security. In this paper, based on the survey data about the big grain production households production operations and analyses of the obstacles in expansion of production in Heilongjiang Province, specific suggestions in supporting the development of the big grain production household were put forward, such as, increasing agricultural production socialized level; perfecting the service system of land transferring; improving financial policies and farmer-friendly policy measures and perfecting the agriculture socialized service system.展开更多
The ultimate value of cultural production should be realizing human's comprehensive and free development,and deconstructing the ultimate value would result in human alienation.In the era of big data,every domain o...The ultimate value of cultural production should be realizing human's comprehensive and free development,and deconstructing the ultimate value would result in human alienation.In the era of big data,every domain of human's social life,even the mode of thinking,has been transformed significantly.However,when the big data technology entirely penetrates the field of cultural production especially inducts the cultural production depending on the demand forecasting techniques,it would inevitably lead to a worry about value of the cultural production.This paper formulates that the cultural production's essence in the era of big data remains for the purpose of maximizing profit of commercial manipulation based on the modeling analysis of cultural production mechanism in the big data times.If the tendency is not corrected,the two main factors of cultural consumerism prevalence and the instrumental reason dictatorship will gradually deconstruct the ultimate value of cultural production and bring about the alienation of human being.For the sake of avoiding the trend,we should cope with two relationships:one is the people as a means and as a purpose;the other is the instrumental reason and the value rationality,finally giving rise to human's comprehensive and free development rather than human alienation.展开更多
With the strategy of media integration,transformation and upgrading of media has become an important issue.In the era of big data,due to the dual impact of data and technology,the media brings both challenges and oppo...With the strategy of media integration,transformation and upgrading of media has become an important issue.In the era of big data,due to the dual impact of data and technology,the media brings both challenges and opportunities.The paper traces the characteristics of the era of big data,focuses on analyzing the challenges and opportunities in the media industry,and analyzes the transformation and upgrading of the media from the dimensions of news production and distribution to better realize the social functions of media in the era of big data.Some strategic suggestions are put forward to improve the propagation effect.展开更多
Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modula...Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.展开更多
Today,we are living in the era of“big data”where massive amounts of data are used for quantitative decisions and communication management.With the continuous penetration of big data-based intelligent technology in a...Today,we are living in the era of“big data”where massive amounts of data are used for quantitative decisions and communication management.With the continuous penetration of big data-based intelligent technology in all fields of human life,the enormous commercial value inherent in the data industry has become a crucial force that drives the aggregation of new industries.For the publishing industry,the introduction of big data and relevant intelligent technologies,such as data intelligence analysis and scenario services,into the structure and value system of the publishing industry,has become an effective path to expanding and reshaping the demand space of publishing products,content decisions,workflow chain,and marketing direction.In the integration and reconstruction of big data,cloud computing,artificial intelligence,and other related technologies,it is expected that a generalized publishing industry pattern dominated by virtual interaction will be formed in the future.展开更多
Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes...Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes.This paper evaluated the daily performance of four precipitation products(MSWEP,ERA5,PERSIANN,and TRMM)for seven regions of the Chinese mainland,using observations from 2462 ground stations across the country as a benchmark.We used four statistical and four classification indicators to describe their spatial and temporal accuracy,and capability to detect precipitation events while analyzing their applicability.The results show that according to the precipitation char-acteristics and accuracy of different types of precipitation products over the Chinese mainland,MSWEP was the most suitable product over the Chinese mainland,having the lowest root mean square error and mean absolute error,along with the highest coefficient of determination.It was followed by TRMM and ERA5,whereas PERSIANN lagged behind in terms of performance.In terms of different regions,MSWEP still performed well,especially in North China and East China.The accuracy of the four precipitation products was relatively low in the summer months,and they all overestimated in the northwest region.In other months,MSWEP and TRMM were better than PERSIANN and ERA5.The four precipitation products had good detection performance over the Chinese mainland,with probability of detection above 0.5.However,with the increase of precipitation threshold,the detection capability of the four products decreased,and MSWEP and ERA5 had good detection capability for moderate rain.TRMM’s detection capability for heavy rain and rainstorms was better than that of the other three products,and PERSIANN’s detection capability for moderate rain,heavy rain and rainstorms was relatively poor,with a large deviation.展开更多
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open sour...Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.展开更多
The multidimensional analysis engine data management platform is constructed using big data distributed storage and parallel computing,data warehouse modeling technology,realizing the optimal management and instant qu...The multidimensional analysis engine data management platform is constructed using big data distributed storage and parallel computing,data warehouse modeling technology,realizing the optimal management and instant query of distributed oil and gas production dynamic big data.The centralized management and quick response of the production data of more than 36×10^4 oil,gas and water wells is realized.Multidimensional analysis subject model of oil,gas and water well production is built to pretreat the relevant data.At the level of China National Petroleum Corporation(CNPC),the rapid analysis and applications such as oil and gas production tracking,early production warning of key oilfields,analysis of low production wells and long shutdown wells,classification of reservoir development laws have been realized,and the processing time has been shortened from 1 d to 5 s.The basic unit of oil and gas production analysis is refined from oilfield to single well,making the production management more detailed.The process can be traced step by step according to CNPC,oil field company,field,block and single well,and the oil and gas production performance of each unit can be mastered in real time.展开更多
In the Internet era,computer technology and data analysis technology have been widely applied to people’s work and their daily lives.Big data technology has brought great influence to public management,providing effi...In the Internet era,computer technology and data analysis technology have been widely applied to people’s work and their daily lives.Big data technology has brought great influence to public management,providing efficient and convenient public services and improving the ability to cope with crises of public opinion[1].However,in the actual public management practice,there are widespread problems such as single practice model and poor data openness.Based on this,the article expounds the relevant contents of big data,introduces the role of big data in public management,and studies the public management innovation in the era of big data.展开更多
In recent years, the rapid development of information and communication technologies accelerates the arrival of the big data era. But it still needs to be explored further for what large data brought on the impact of ...In recent years, the rapid development of information and communication technologies accelerates the arrival of the big data era. But it still needs to be explored further for what large data brought on the impact of urban planning and how to respond to the implementation and formation of urban planning to the end. We will research from two aspects of the practice study and formation of urban planning in Hunan to discuss based on brief review of research about urban space big data era.展开更多
In the market of agricultural products, the price of agricultural products is affected by production cost, market supply and other factors. In order to obtain the market information of agricultural products, the price...In the market of agricultural products, the price of agricultural products is affected by production cost, market supply and other factors. In order to obtain the market information of agricultural products, the price fluctuation can be analyzed and predicted. A distributed big data software platform based on Hadoop, Hive and Spark is proposed to analyze and forecast agricultural price data. Firstly, Hadoop, Hive and Spark big data frameworks were built to store the data information of agricultural products crawled into MYSQL. Secondly, the information of agricultural products crawled from MYSQL was exported to a text file, uploaded to HDFS, and mapped to spark SQL database. The data was cleaned and improved by Holt-Winters (three times exponential smoothing method) model to predict the price of agricultural products in the future. The data cleaned by spark SQL was imported and predicted by improved Holt-Winters into MYSQL database. The technologies of pringMVC, Ajax and Echarts were used to visualize the data.展开更多
基金Supported by the Stage Achievement of Social Science Fund Project of Heilongjiang Province and the Application of Technology Research(12C053)the Development Project in Heilongjiang Province(2013R0242)
文摘Developing production and operation in scales in the major grain producing areas is the direction of the paper. Seizing the opportunity of modem agriculture comprehensive reform in two plains (Songnen Plain and Sanjiang Plain) of Heilongjiang Province and supporting to build a new type of production and management based on the big grain production householding, which plays demonstration and leading roles, have an important strategic position in improving agricultural comprehensive production capacity and ensuring national food security. In this paper, based on the survey data about the big grain production households production operations and analyses of the obstacles in expansion of production in Heilongjiang Province, specific suggestions in supporting the development of the big grain production household were put forward, such as, increasing agricultural production socialized level; perfecting the service system of land transferring; improving financial policies and farmer-friendly policy measures and perfecting the agriculture socialized service system.
基金Supported by Research Project of Shaanxi Academy of Governance in 2016(YKT16005)West Project of National Social Science Fund(15XKS011)
文摘The ultimate value of cultural production should be realizing human's comprehensive and free development,and deconstructing the ultimate value would result in human alienation.In the era of big data,every domain of human's social life,even the mode of thinking,has been transformed significantly.However,when the big data technology entirely penetrates the field of cultural production especially inducts the cultural production depending on the demand forecasting techniques,it would inevitably lead to a worry about value of the cultural production.This paper formulates that the cultural production's essence in the era of big data remains for the purpose of maximizing profit of commercial manipulation based on the modeling analysis of cultural production mechanism in the big data times.If the tendency is not corrected,the two main factors of cultural consumerism prevalence and the instrumental reason dictatorship will gradually deconstruct the ultimate value of cultural production and bring about the alienation of human being.For the sake of avoiding the trend,we should cope with two relationships:one is the people as a means and as a purpose;the other is the instrumental reason and the value rationality,finally giving rise to human's comprehensive and free development rather than human alienation.
文摘With the strategy of media integration,transformation and upgrading of media has become an important issue.In the era of big data,due to the dual impact of data and technology,the media brings both challenges and opportunities.The paper traces the characteristics of the era of big data,focuses on analyzing the challenges and opportunities in the media industry,and analyzes the transformation and upgrading of the media from the dimensions of news production and distribution to better realize the social functions of media in the era of big data.Some strategic suggestions are put forward to improve the propagation effect.
基金National Key R&D Program of China(Grant No.2018YFB1701701)Sailing Talent Program+1 种基金Guangdong Provincial Science and Technologies Program of China(Grant No.2017B090922008)Special Grand Grant from Tianjin City Government of China。
文摘Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.
文摘Today,we are living in the era of“big data”where massive amounts of data are used for quantitative decisions and communication management.With the continuous penetration of big data-based intelligent technology in all fields of human life,the enormous commercial value inherent in the data industry has become a crucial force that drives the aggregation of new industries.For the publishing industry,the introduction of big data and relevant intelligent technologies,such as data intelligence analysis and scenario services,into the structure and value system of the publishing industry,has become an effective path to expanding and reshaping the demand space of publishing products,content decisions,workflow chain,and marketing direction.In the integration and reconstruction of big data,cloud computing,artificial intelligence,and other related technologies,it is expected that a generalized publishing industry pattern dominated by virtual interaction will be formed in the future.
基金173 National Basic Research Program of China(2020-JCJQ-ZD-087-01)。
文摘Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes.This paper evaluated the daily performance of four precipitation products(MSWEP,ERA5,PERSIANN,and TRMM)for seven regions of the Chinese mainland,using observations from 2462 ground stations across the country as a benchmark.We used four statistical and four classification indicators to describe their spatial and temporal accuracy,and capability to detect precipitation events while analyzing their applicability.The results show that according to the precipitation char-acteristics and accuracy of different types of precipitation products over the Chinese mainland,MSWEP was the most suitable product over the Chinese mainland,having the lowest root mean square error and mean absolute error,along with the highest coefficient of determination.It was followed by TRMM and ERA5,whereas PERSIANN lagged behind in terms of performance.In terms of different regions,MSWEP still performed well,especially in North China and East China.The accuracy of the four precipitation products was relatively low in the summer months,and they all overestimated in the northwest region.In other months,MSWEP and TRMM were better than PERSIANN and ERA5.The four precipitation products had good detection performance over the Chinese mainland,with probability of detection above 0.5.However,with the increase of precipitation threshold,the detection capability of the four products decreased,and MSWEP and ERA5 had good detection capability for moderate rain.TRMM’s detection capability for heavy rain and rainstorms was better than that of the other three products,and PERSIANN’s detection capability for moderate rain,heavy rain and rainstorms was relatively poor,with a large deviation.
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
文摘Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.
基金Supported by the China National Science and Technology Major Project(2016ZX05016-006).
文摘The multidimensional analysis engine data management platform is constructed using big data distributed storage and parallel computing,data warehouse modeling technology,realizing the optimal management and instant query of distributed oil and gas production dynamic big data.The centralized management and quick response of the production data of more than 36×10^4 oil,gas and water wells is realized.Multidimensional analysis subject model of oil,gas and water well production is built to pretreat the relevant data.At the level of China National Petroleum Corporation(CNPC),the rapid analysis and applications such as oil and gas production tracking,early production warning of key oilfields,analysis of low production wells and long shutdown wells,classification of reservoir development laws have been realized,and the processing time has been shortened from 1 d to 5 s.The basic unit of oil and gas production analysis is refined from oilfield to single well,making the production management more detailed.The process can be traced step by step according to CNPC,oil field company,field,block and single well,and the oil and gas production performance of each unit can be mastered in real time.
文摘In the Internet era,computer technology and data analysis technology have been widely applied to people’s work and their daily lives.Big data technology has brought great influence to public management,providing efficient and convenient public services and improving the ability to cope with crises of public opinion[1].However,in the actual public management practice,there are widespread problems such as single practice model and poor data openness.Based on this,the article expounds the relevant contents of big data,introduces the role of big data in public management,and studies the public management innovation in the era of big data.
基金National Natural Science Foundation of China [41371182] approval: NSC gold count [2013] 57 items
文摘In recent years, the rapid development of information and communication technologies accelerates the arrival of the big data era. But it still needs to be explored further for what large data brought on the impact of urban planning and how to respond to the implementation and formation of urban planning to the end. We will research from two aspects of the practice study and formation of urban planning in Hunan to discuss based on brief review of research about urban space big data era.
文摘In the market of agricultural products, the price of agricultural products is affected by production cost, market supply and other factors. In order to obtain the market information of agricultural products, the price fluctuation can be analyzed and predicted. A distributed big data software platform based on Hadoop, Hive and Spark is proposed to analyze and forecast agricultural price data. Firstly, Hadoop, Hive and Spark big data frameworks were built to store the data information of agricultural products crawled into MYSQL. Secondly, the information of agricultural products crawled from MYSQL was exported to a text file, uploaded to HDFS, and mapped to spark SQL database. The data was cleaned and improved by Holt-Winters (three times exponential smoothing method) model to predict the price of agricultural products in the future. The data cleaned by spark SQL was imported and predicted by improved Holt-Winters into MYSQL database. The technologies of pringMVC, Ajax and Echarts were used to visualize the data.