Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac...The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts t...Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts to answer the question of whether spatial planning,which is supposed to guarantee spatial order,fulfils its role and whether the knowledge of the natural conditions of spatial development is respected in the spatial planning process.Using GIS techniques,up to 238 communes were analysed in terms of their spatial coverage,the degree of scattered settlement,and the violation of natural barriers by location of buildings in areas that are threatened with mass movements or floods;by settlement on excessively inclined slopes and in areas with adverse climatic conditions.Spearman non-parametric rank correlation analysis and the multidimensional Principal Component Analysis(PCA)technique were performed to investigate relations between spatial chaos indicators and the planning situation.The analysis of the data has revealed that spatial planning does not fulfil its role.Serious errors in location of buildings have been noted even though the communes are covered by local spatial development plans.Scientific knowledge is not sufficiently transferred into planning documents,and bottom-up initiatives cannot replace systemic solutions.There is a need for strengthening the role of environmental studies documents in the spatial planning system.This would facilitate the transfer of scientific knowledge into the planning process and help to protect mountain areas.The development of a special spatial strategy for the Polish Carpathians in compliance with the Carpathian Convention is also recommended.展开更多
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
文摘The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金supported by the Minister of Science of the Republic of Poland under the Programme“Regional initiative of excellence”.Agreement No.RID/SP/0010/2024/1.
文摘Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts to answer the question of whether spatial planning,which is supposed to guarantee spatial order,fulfils its role and whether the knowledge of the natural conditions of spatial development is respected in the spatial planning process.Using GIS techniques,up to 238 communes were analysed in terms of their spatial coverage,the degree of scattered settlement,and the violation of natural barriers by location of buildings in areas that are threatened with mass movements or floods;by settlement on excessively inclined slopes and in areas with adverse climatic conditions.Spearman non-parametric rank correlation analysis and the multidimensional Principal Component Analysis(PCA)technique were performed to investigate relations between spatial chaos indicators and the planning situation.The analysis of the data has revealed that spatial planning does not fulfil its role.Serious errors in location of buildings have been noted even though the communes are covered by local spatial development plans.Scientific knowledge is not sufficiently transferred into planning documents,and bottom-up initiatives cannot replace systemic solutions.There is a need for strengthening the role of environmental studies documents in the spatial planning system.This would facilitate the transfer of scientific knowledge into the planning process and help to protect mountain areas.The development of a special spatial strategy for the Polish Carpathians in compliance with the Carpathian Convention is also recommended.