期刊文献+
共找到104,942篇文章
< 1 2 250 >
每页显示 20 50 100
The Aesthetic Characteristics of Emotional Abuse in The Japanese Movie“0.5mm”
1
作者 CHEN Shao-ping 《Journal of Literature and Art Studies》 2024年第6期455-461,共7页
The Japanese movie“0.5mm”connects the life clips between the nursing-care helper Sawa and several old people in the form of a road movie,highlighting many thought-provoking social problems,and revealing how the elem... The Japanese movie“0.5mm”connects the life clips between the nursing-care helper Sawa and several old people in the form of a road movie,highlighting many thought-provoking social problems,and revealing how the elements of emotional abuse hidden between the old people and their relatives and friends affect people’s dignity and decency,and at the same time trying to offset the persecution from the emotional abuse with the warm kindness between the elderly and the care workers.The film’s implicit description of emotional abuse and explicit display of good deeds are blended in the quiet and mysterious narrative character,achieving the effect of synchronizing the artistic narrative rhythm with the flow of life,reflecting the unique aesthetic characteristics of Japanese films. 展开更多
关键词 “0.5mm” emotional abuse aesthetic characteristics
下载PDF
Personality Traits, Thinking Styles, and Emotional Intelligence in Nursing, towards Healthcare Providers’ Characterization and Safer Patient Care
2
作者 Adel Omar Bataweel 《Open Journal of Nursing》 2023年第2期130-166,共37页
Background: This study explored nursing personality traits (Big Five Inventory BFI), emotional intelligence (EI), and thinking styles (Rational, RS, and Experiential, ES) together with demographic data to see how they... Background: This study explored nursing personality traits (Big Five Inventory BFI), emotional intelligence (EI), and thinking styles (Rational, RS, and Experiential, ES) together with demographic data to see how they could relate and the implication of this on nurses and patient safety. Design: A cross-sectional study. Methods: Nursing sample (n = 435). Participants completed a self-report online survey, which included demographic information, followed by questionnaires to measure personality traits, thinking styles, and emotional intelligence. Results: Spearman’s rank correlation was computed to assess the relationship between EI and Extraversion;there was a moderate positive correlation between the two variables, r = 0.487, p r = 0.731, p r = 0.723, p r = -0.666, p r = 0.467, p Conclusion: Different studies consolidated each other, and all converge and channel into the concept of characterization of healthcare providers for better support to them and safer patient care. EI correlated with all BFI components, and both positively impacted all desirable behaviors. Therefore, it would be valuable if organizations invested in increasing EI in their providers as it might highlight areas for improvement and equip providers with appropriate and advantageous coping strategies. 展开更多
关键词 Patient Safety emotional Intelligence Thinking Style Rational Style Experiential Style Medical Error Personality Traits BFI BURNOUT And Healthcare Worker characterization
下载PDF
Impact of propofol and sevoflurane anesthesia on cognition and emotion in gastric cancer patients undergoing radical resection 被引量:2
3
作者 Ao-Han Li Su Bu +2 位作者 Ling Wang Ai-Min Liang Hui-Yu Luo 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期79-89,共11页
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitiv... BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances. 展开更多
关键词 PROPOFOL SEVOFLURANE Radical resection of gastric cancer Anesthetic effect Cognitive function Negative emotion
下载PDF
Adolescent suicide risk factors and the integration of socialemotional skills in school-based prevention programs 被引量:2
4
作者 Xin-Qiao Liu Xin Wang 《World Journal of Psychiatry》 SCIE 2024年第4期494-506,共13页
Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of sui... Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of suicide.Psychological,social,family,individual,and environmental factors are important risk factors for suicidal behavior among teenagers and may contribute to suicide risk through various direct,indirect,or combined pathways.Social-emotional learning is considered a powerful intervention measure for addressing the crisis of adolescent suicide.When deliberately cultivated,fostered,and enhanced,selfawareness,self-management,social awareness,interpersonal skills,and responsible decision-making,as the five core competencies of social-emotional learning,can be used to effectively target various risk factors for adolescent suicide and provide necessary mental and interpersonal support.Among numerous suicide intervention methods,school-based interventions based on social-emotional competence have shown great potential in preventing and addressing suicide risk factors in adolescents.The characteristics of school-based interventions based on social-emotional competence,including their appropriateness,necessity,cost-effectiveness,comprehensiveness,and effectiveness,make these interventions an important means of addressing the crisis of adolescent suicide.To further determine the potential of school-based interventions based on social-emotional competence and better address the issue of adolescent suicide,additional financial support should be provided,the combination of socialemotional learning and other suicide prevention programs within schools should be fully leveraged,and cooperation between schools and families,society,and other environments should be maximized.These efforts should be considered future research directions. 展开更多
关键词 Adolescent suicide Risk factors Social-emotional skills Social and emotional learning SCHOOL Prevention
下载PDF
Faster Region Convolutional Neural Network(FRCNN)Based Facial Emotion Recognition
5
作者 J.Sheril Angel A.Diana Andrushia +3 位作者 TMary Neebha Oussama Accouche Louai Saker N.Anand 《Computers, Materials & Continua》 SCIE EI 2024年第5期2427-2448,共22页
Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on han... Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions. 展开更多
关键词 Facial emotions FRCNN deep learning emotion recognition FACE CNN
下载PDF
Emotion Measurement Using Biometric Signal
6
作者 Yukina Miyagi Saori Gocho +4 位作者 Yuka Miyachi Chika Nakayama Shoshiro Okada Kenta Maruyama Taeyuki Oshima 《Health》 2024年第5期395-404,共10页
In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success... In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals. 展开更多
关键词 Biometric Signals ELECTROENCEPHALOGRAM ELECTROCARDIOGRAM emotion Communication
下载PDF
Optimised CNN Architectures for Handwritten Arabic Character Recognition
7
作者 Salah Alghyaline 《Computers, Materials & Continua》 SCIE EI 2024年第6期4905-4924,共20页
Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T... Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets. 展开更多
关键词 Optical character recognition(OCR) handwritten arabic characters deep learning
下载PDF
Rational and Continuous Measurement of Emotional-Fingerprint, Emotional-Quotient and Categorical vs Proportional Recognition of Facial Emotions with M.A.R.I.E., Second Half
8
作者 Philippe Granato Shreekumar Vinekar +1 位作者 Jean-Pierre Van Gansberghe Raymond Bruyer 《Open Journal of Psychiatry》 2024年第4期400-450,共51页
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i... Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition. 展开更多
关键词 M.A.R.I.E. Universality Idiosyncrasy Measurement of emotional Quotient emotional Fingerprint emotional Decision-Making Limbic Lobe
下载PDF
Rational and Continuous Measurement of the Emotional Decision Making in Visual Recognition of Facial Emotional Expressions with M.A.R.I.E.: First Half
9
作者 Philippe Granato Shreekumar Vinekar +1 位作者 Jean-Pierre Van Gansberghe Raymond Bruyer 《Open Journal of Psychiatry》 2024年第3期223-264,共42页
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i... Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition. 展开更多
关键词 M.A.R.I.E. UNIVERSALITY Idiosyncrasy Measurement of emotional Quotient emotional Fingerprint emotional Decision-Making Limbic Lobe
下载PDF
Effect of Co on Solidification Characteristics and Microstructural Transformation of Non-equilibrium Solidified Cu-Ni Alloys
10
作者 安红恩 Bih-Lii Chua +1 位作者 Ismail Saad Willey Yun Hsien Liew 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期444-453,共10页
Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of und... Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size. 展开更多
关键词 non-equilibrium solidification recalescence effect solidification character microstructure
下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
11
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 emotions AMIGOS ECG LIGHTWEIGHT 1D CNN
下载PDF
Narrative nursing for negative emotions in patients with acute pancreatitis:Based on model construction and application
12
作者 Ling-Jun Zhou Juan Wu +4 位作者 Wen-Jie Huang Ai-Wu Shen Yu-Ping Yin Hai-Li Sun Yu-Ting Yuan 《World Journal of Psychiatry》 SCIE 2024年第11期1631-1640,共10页
BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones... BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones,elevated blood sugar levels,and enhanced insulin resistance,which in turn increases the risk of AP and significantly affects the patient's quality of life.Therefore,exploring the intervention effects of narrative nursing programs on the negative emotions of patients with AP is not only helpful in alleviating psychological stress and improving quality of life but also has significant implications for improving disease outcomes and prognosis.AIM To construct a narrative nursing model for negative emotions in patients with AP and verify its efficacy in application.METHODS Through Delphi expert consultation,a narrative nursing model for negative emotions in patients with AP was constructed.A non-randomized quasi-experimental study design was used in this study.A total of 92 patients with AP with negative emotions admitted to a tertiary hospital in Nantong City of Jiangsu Province,China from September 2022 to August 2023 were recruited by convenience sampling,among whom 46 patients admitted from September 2022 to February 2023 were included in the observation group,and 46 patients from March to August 2023 were selected as control group.The observation group received narrative nursing plan,while the control group was given with routine nursing.Self-rating anxiety scale(SAS),self-rating depression scale(SDS),positive and negative affect scale(PANAS),caring behavior scale,patient satisfaction scale and 36-item short form health survey questionnaire(SF-36)were used to evaluate their emotions,satisfaction and caring behaviors in the two groups on the day of discharge,1-and 3-month following discharge.RESULTS According to the inclusion and exclusion criteria,a total of 45 cases in the intervention group and 44 cases in the control group eventually recruited and completed in the study.On the day of discharge,the intervention group showed significantly lower scores of SAS,SDS and negative emotion(28.57±4.52 vs 17.4±4.44,P<0.001),whereas evidently higher outcomes in the positive emotion score,Caring behavior scale score and satisfaction score compared to the control group(P<0.05).Repeated measurement analysis of variance showed that significant between-group differences were found in time effect,inter-group effect and interaction effect of SAS and PANAS scores as well as in time effect and inter-group effect of SF-36 scores(P<0.05);the SF-36 scores of two groups at 3 months after discharge were higher than those at 1 month after discharge(P<0.05).CONCLUSION The application of narrative nursing protocols has demonstrated significant effectiveness in alleviating anxiety,ameliorating negative emotions,and enhancing satisfaction among patients with AP. 展开更多
关键词 Acute pancreatitis Negative emotions Narrative nursing model Adverse emotions Self-rating anxiety scale Selfrating depression scale
下载PDF
The Emotional Intelligence and the Associated Factors among Nursing Students
13
作者 Ahmad Batran 《Open Journal of Nursing》 2024年第3期114-126,共13页
Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and ben... Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and beneficial way with the use of emotional intelligence. Nurses who can identify, control, and interpret both their own emotions and those of their patients provide better patient care. The purpose of this study was to assess the emotional intelligence and to investigate the relationship and differences between emotional intelligence and demographic characteristics of nursing students. Methods: A cross-sectional study was carried out on 381 nursing students. Data collection was completed by “Schutte Self Report Emotional Intelligence Test”. Data were analyzed with the Statistical Package for Social Science. An independent t test, ANOVA, and Pearson correlation, multiple linear regression were used. Results: The results revealed that the emotional intelligence mean was 143.1 ± 21.6 (ranging from 33 to 165), which is high. Also, the analysis revealed that most of the participants 348 (91.3%) had higher emotional intelligence level. This finding suggests that nursing students are emotionally intelligent and may be able to notice, analyze, control, manage, and harness emotion in an adaptive manner. Also, academic year of nursing students was a predictor of emotional intelligence. Furthermore, there was positive relationship between the age and emotional intelligence (p < 0.05). The students’ ability to use their EI increased as they rose through the nursing grades. Conclusion: This study confirmed that the emotional intelligence score of the nursing students was high. Also, academic year of nursing students was a predictor of emotional intelligence. In addition, a positive relationship was confirmed between the emotional intelligence and age of nursing students. . 展开更多
关键词 STUDENTS NURSING emotional Intelligence
下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
14
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper HIGH-DIMENSIONAL feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
E2E-MFERC:AMulti-Face Expression Recognition Model for Group Emotion Assessment
15
作者 Lin Wang Juan Zhao +1 位作者 Hu Song Xiaolong Xu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1105-1135,共31页
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal... In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well. 展开更多
关键词 Multi-face expression recognition smart classroom end-to-end detection group emotion assessment
下载PDF
Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
16
作者 Adéla Hamplová Alexey Lyavdansky +3 位作者 TomášNovák Ondrej Svojše David Franc Arnošt Veselý 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2869-2889,共21页
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go... This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis. 展开更多
关键词 Optical character recognition instance segmentation Palmyrene ancient languages computer vision
下载PDF
Multimodal emotion recognition in the metaverse era:New needs and transformation in mental health work
17
作者 Yan Zeng Jun-Wen Zhang Jian Yang 《World Journal of Clinical Cases》 SCIE 2024年第34期6674-6678,共5页
This editorial comments on an article recently published by López del Hoyo et al.The metaverse,hailed as"the successor to the mobile Internet",is undoubtedly one of the most fashionable terms in recent ... This editorial comments on an article recently published by López del Hoyo et al.The metaverse,hailed as"the successor to the mobile Internet",is undoubtedly one of the most fashionable terms in recent years.Although metaverse development is a complex and multifaceted evolutionary process influenced by many factors,it is almost certain that it will significantly impact our lives,including mental health services.Like any other technological advancements,the metaverse era presents a double-edged sword for mental health work,which must clearly understand the needs and transformations of its target audience.In this editorial,our primary focus is to contemplate potential new needs and transformation in mental health work during the metaverse era from the pers-pective of multimodal emotion recognition. 展开更多
关键词 Multimodal emotion recognition Metaverse Needs TRANSFORMATION Mental health
下载PDF
A Model for Detecting Fake News by Integrating Domain-Specific Emotional and Semantic Features
18
作者 Wen Jiang Mingshu Zhang +4 位作者 Xu’an Wang Wei Bin Xiong Zhang Kelan Ren Facheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第8期2161-2179,共19页
With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t... With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible. 展开更多
关键词 Fake news detection domain-related emotional features semantic features feature fusion
下载PDF
Effect of emotion management and nursing on patients with painless induced abortion after operation
19
作者 Jing Yang Xiao Yang Zhuo-Ya Xiong 《World Journal of Psychiatry》 SCIE 2024年第8期1182-1189,共8页
BACKGROUND With an estimated 121 million abortions following unwanted pregnancies occurring worldwide each year,many countries are now committed to protecting women’s reproductive rights.AIM To analyze the impact of ... BACKGROUND With an estimated 121 million abortions following unwanted pregnancies occurring worldwide each year,many countries are now committed to protecting women’s reproductive rights.AIM To analyze the impact of emotional management and care on anxiety and contraceptive knowledge mastery in painless induced abortion(IA)patients.METHODS This study was retrospective analysis of 84 patients with IA at our hospital.According to different nursing methods,the patients were divided into a control group and an observation group,with 42 cases in each group.Degree of pain,rate of postoperative uterine relaxation,surgical bleeding volume,and postoperative bleeding volume at 1 h between the two groups of patients;nursing satisfaction;and mastery of contraceptive knowledge were analyzed.RESULTS After nursing,Self-Assessment Scale,Depression Self-Assessment Scale,and Hamilton Anxiety Scale scores were 39.18±2.18,30.27±2.64,6.69±2.15,respectively,vs 45.63±2.66,38.61±2.17,13.45±2.12,respectively,with the observation group being lower than the control group(P<0.05).Comparing visual analog scales,the observation group was lower than the control group(4.55±0.22 vs 3.23±0.41;P<0.05).The relaxation rate of the cervix after nursing,surgical bleeding volume,and 1-h postoperative bleeding volumes were 25(59.5),31.72±2.23,and 22.41±1.23,respectively,vs 36(85.7),42.39±3.53,28.51±3.34,respec tively,for the observation group compared to the control group.The observation group had a better nursing situation(P<0.05),and higher nursing satisfaction and contraceptive knowledge mastery scores compared to the control group(P<0.05).CONCLUSION The application of emotional management in postoperative care of IA has an ideal effect. 展开更多
关键词 emotional management Induced abortion ANXIETY CARE Contraceptive knowledge
下载PDF
A Method for Detecting and Recognizing Yi Character Based on Deep Learning
20
作者 Haipeng Sun Xueyan Ding +2 位作者 Jian Sun HuaYu Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2721-2739,共19页
Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detec... Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detection and recognition.In the detection stage,an improved Differentiable Binarization Network(DBNet)framework is introduced to detect Yi characters,in which the Omni-dimensional Dynamic Convolution(ODConv)is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features,thereby improving the accuracy of Yi character detection.Then,the feature pyramid network fusion module is used to further extract Yi character image features,improving target recognition at different scales.Further,the previously generated feature map is passed through a head network to produce two maps:a probability map and an adaptive threshold map of the same size as the original map.These maps are then subjected to a differentiable binarization process,resulting in an approximate binarization map.This map helps to identify the boundaries of the text boxes.Finally,the text detection box is generated after the post-processing stage.In the recognition stage,an improved lightweight MobileNetV3 framework is used to recognize the detect character regions,where the original Squeeze-and-Excitation(SE)block is replaced by the efficient Shuffle Attention(SA)that integrates spatial and channel attention,improving the accuracy of Yi characters recognition.Meanwhile,the use of depth separable convolution and reversible residual structure can reduce the number of parameters and computation of the model,so that the model can better understand the contextual information and improve the accuracy of text recognition.The experimental results illustrate that the proposed method achieves good results in detecting and recognizing Yi characters,with detection and recognition accuracy rates of 97.5%and 96.8%,respectively.And also,we have compared the detection and recognition algorithms proposed in this paper with other typical algorithms.In these comparisons,the proposed model achieves better detection and recognition results with a certain reliability. 展开更多
关键词 Yi characters text detection text recognition attention mechanism deep neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部