Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in art...Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica.展开更多
Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based...Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based binders which have a relatively high environmental impact.Finding alternatives to cement-based binders can improve environmental performance and this paper proposes microbial grouted backfill(MGB)as a potential solution.In this paper,the effects of the cementation solution concentration(CSC),volume ratio of bacterial solution to cementation solution(VRBC),particle sizes of the aggregates,and the number of grouting batches on the mechanical properties of MGB are studied.The experimental results show that MGB strength increased,up to a peak value,as CSC was increased,before decreasing as CSC was increased further.The results also show that MGB strength increased,up to a peak value,as VRBC decreased,before decreasing as the VRBC was decreased further.The peak strength was achieved at a CSC of 2 mol/L and a VRBC of 1:9.The strength of the MGB also increased as the number of grouting batches increased.Graded MGB samples showed the highest UCS,25.12 MPa,at particle sizes of 0.2 to 0.8 mm,while full(non-graded)MGB samples displayed mean UCS values ranging from1.56 MPa when the maximum particle size was 0.2 mm,up to 13 MPa when the maximum particle size was 1.2 mm.MGB samples are consolidated by the calcium carbonate that is precipitated during microbial metabolism,and the strength of MGB increases linearly as calcium carbonate content increases.The calcium carbonate minerals produced in MGB materials are primarily calcite,with secondary amounts of vaterite.展开更多
Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditi...Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Land consolidation(LC) stands as a globally recognized strategy for rural development. In China, it has evolved towards comprehensive land consolidation(CLC) to support the rural revitalization initiative. However, th...Land consolidation(LC) stands as a globally recognized strategy for rural development. In China, it has evolved towards comprehensive land consolidation(CLC) to support the rural revitalization initiative. However, there are ongoing challenges in understanding CLC's specific pathway and mechanism, particularly its role in stimulating rural endogenous development. This study aims to investigate the localization process of international experiences, examine the pathway of CLC, and scrutinize its mechanism in rural development from a novel perspective of neo-endogenous development. Field research and semi-structured interviews were conducted in Nanzhanglou village, renowned for its early adoption of CLC practices inspired by German experiences since 1988. Overall, key findings underscore the advantages of CLC in spatial restructuring, industrial development, and human capital enhancement in rural areas. Additionally, international experiences emerge as crucial exogenous forces, primarily by knowledge embedding, which catalyzes rural neo-endogenous development via the “resource-engagement-identity-endogenous” mechanism. Collectively, by introducing a neo-endogenous theoretical framework, this study offers valuable insights into the CLC implementation in China and beyond, and emphasizes the positive impact of knowledge embedding as an exogenous force in promoting rural neo-endogenous development to address existing research gaps. Recommendations for sustainable rural development involve enhancing rural planning practicality, governance capacity, and local leadership, while prioritizing agricultural modernization and increasing investments in education and vocational training to ensure that villagers benefit from industrial development.展开更多
Family farm is a new type of agricultural operation,and the research on ecological compensation for its production behavior is conducive to consolidating the basic position of agriculture and protecting agricultural r...Family farm is a new type of agricultural operation,and the research on ecological compensation for its production behavior is conducive to consolidating the basic position of agriculture and protecting agricultural resources and environment.By summarizing and drawing lessons from the domestic research results in related fields,the family farm is selected as the object,and the opportunity cost method is used to analyze the setting of the ecological compensation standard of the family farm.The basic framework of ecological compensation mechanism of family farm is constructed from three aspects:ecological compensation responsibility determination mechanism;compensation object establishment mechanism;compensation standard determination and mode selection mechanism.The operation mechanism of ecological compensation of family farm is analyzed from three aspects:farmer;farm production;resources and environment.The results show that the family farms'pursuit of agricultural products and ecological services is the response mechanism of ecological compensation for their production behavior.On the basis of this,this paper puts forward some measures and suggestions to ensure the ecological compensation mechanism of family farms from three aspects:perfecting the land use system;widening the compensation channels;constructing the green GDP accounting.展开更多
Objective: Physical and psychological stress causes harm to the health status of the elderly with chronic diseases. This study aimed to understand coping mechanisms of the elderly with chronic conditions who live with...Objective: Physical and psychological stress causes harm to the health status of the elderly with chronic diseases. This study aimed to understand coping mechanisms of the elderly with chronic conditions who live with their family. Methods: This study was conducted using a descriptive phenomenology method from the experience of 13 older adults with chronic disease. The study processes were interviewed, tape recorded, transcribed, and explored from the transcripts using Colaizzi’s descriptive phenomenological method. The steps of the descriptive phenomenology process are bracketing, intuiting, analyzing, and describing. Results: The coping mechanisms used by the elderly with chronic diseases are (1) the behavioral focus coping ways by doing sports, and physical activities;(2) Focus on spirituality has been implemented by fasting, chanting, dhikr, and prayer;(3) The cognitive focus by working on hobbies or habitual activities and helping each other;(4) The social interaction focus was by interacting with friends, family, and neighbors. Conclusions: This shows that elderly adults with disease conditions try to adapt various forms of coping mechanisms, which positively affects their psychological state. Families which have elderly with chronic diseases are expected to provide nurturing and psychological support to them so that the elderly can consistently apply coping mechanisms to overcome and tackle chronic diseases. Understanding the coping mechanism implementation of the elderly who have chronic diseases by their family can guide health specialists in designing psychological and spiritual approach interventions.展开更多
In the development of family enterprises of feed and veterinary drugs in China,there are many problems,such as lack of organic integration of human capital and social human capital.This paper introduced development th...In the development of family enterprises of feed and veterinary drugs in China,there are many problems,such as lack of organic integration of human capital and social human capital.This paper introduced development thread of family enterprises of feed and veterinary drugs in China,analyzed theories and practical development requirement for improving professional manager mechanism,and came up with recommendations including establishing proper employing system,incentive and restraint mechanism,corporate culture,and professional manager market.展开更多
Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron...Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The compressive strength and hardness values of the composites were also determined. The results show that the composites have higher compressive yield strength and hardness values than hot-rolled pure titanium. Twins in the microstructure of TMCs show that titanium particles undergo plastic deformation during consolidation process. The fine grains with size less than 1 μm often locate in the boundaries among the titanium particles. TiC particles seem to keep unchanged during the consolidation. These bring about the increase in strength and hardness for the composites. The detonation speed of 3 200 m/s is proper parameter for compacting powder in the present work.展开更多
Gully erosion is serious in the tableland area of the Loess Plateau due to high-intensity human activities and extreme rainfall, which cause serious soil loss and an increasing tableland shrinkage rate. Severe gully e...Gully erosion is serious in the tableland area of the Loess Plateau due to high-intensity human activities and extreme rainfall, which cause serious soil loss and an increasing tableland shrinkage rate. Severe gully erosion has exerted a notable negative impact on local agriculture, human life and socioeconomic development. In recent decades, progress has been made in soil and water conservation with the goal of reducing soil erosion and protecting loess tableland, but basic research on gully consolidation and tableland protection(GCTP) is lacking, especially regarding the mechanisms of gully erosion and expansion in loess tableland under the interactive impacts of hydrodynamics and human activities. In addition, there is a lack of a deep understanding of the underlying mechanisms of soil-water disasters and controlling factors of unreasonable GCTP projects.Currently, the problems of headcut erosion and tableland fragmentation remain serious. Based on this situation, the Dongzhi tableland, the largest tableland on the Loess Plateau, was adopted as an example, and we studied gully erosion and expansion mechanisms in the loess tableland and the scientific basis of GCTP projects. We obtained a series of novel findings, including the following:(1) vertical joints are widely developed in loess and impose a controlling effect on tableland edge erosion;(2) rapid urbanization and road network expansion intensify headcut erosion and are the main reasons for severe erosion and tableland shrinkage in the Dongzhi tableland;and(3) unreasonable drainage of surface runoff and a rise in the groundwater level are the key factors affecting GCTP project stability. Moreover, the mechanisms and modes of erosion disasters in the project driven by these two factors were explained. The systematic remediation idea of retention, storage, drainage and consolidation for the GCTP project was introduced, and the core is water control, which emphasizes the combination of soil and water conservation and geohazard prevention measures. As a systematic remediation project, GCTP in loess tableland requires multidisciplinary and multimethod approaches and multiple measures involving ecology, soil and water conservation, geology and engineering to ensure project feasibility and sustainability.展开更多
One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seaflo...One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.展开更多
基金the National Key R&D Program of China(No.2019YFD0901204)the Hong Kong,Macao and Taiwan Science and Technology Cooperation Project(No.2014DFT30120)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.Y14C190008)the National Natural Science Foundation of China(Nos.31101937,31872547)the Science Foundation of Donghai Laboratory(No.DH-2022KF0209)。
文摘Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica.
基金supported by the National Natural Science Foundation of China(Nos.5180430852034009)+3 种基金the China Postdoctoral Science Foundation(Nos.2020T1302692020M670689)the Yue Qi Young Scholar Project(No.2020QN03)the Postdoctoral Research Project of Hebei Province(No.B2020003029)。
文摘Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based binders which have a relatively high environmental impact.Finding alternatives to cement-based binders can improve environmental performance and this paper proposes microbial grouted backfill(MGB)as a potential solution.In this paper,the effects of the cementation solution concentration(CSC),volume ratio of bacterial solution to cementation solution(VRBC),particle sizes of the aggregates,and the number of grouting batches on the mechanical properties of MGB are studied.The experimental results show that MGB strength increased,up to a peak value,as CSC was increased,before decreasing as CSC was increased further.The results also show that MGB strength increased,up to a peak value,as VRBC decreased,before decreasing as the VRBC was decreased further.The peak strength was achieved at a CSC of 2 mol/L and a VRBC of 1:9.The strength of the MGB also increased as the number of grouting batches increased.Graded MGB samples showed the highest UCS,25.12 MPa,at particle sizes of 0.2 to 0.8 mm,while full(non-graded)MGB samples displayed mean UCS values ranging from1.56 MPa when the maximum particle size was 0.2 mm,up to 13 MPa when the maximum particle size was 1.2 mm.MGB samples are consolidated by the calcium carbonate that is precipitated during microbial metabolism,and the strength of MGB increases linearly as calcium carbonate content increases.The calcium carbonate minerals produced in MGB materials are primarily calcite,with secondary amounts of vaterite.
基金financially supported by the National Natural Science Foundation of China(Nos.51574284 and 51504293)the Science and Technology Program of Yunnan Province,China(No.2013IB020)
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金National Natural Science Foundation of China,No.42271259The Open Fund of Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources,China,No.2021CZEPK07。
文摘Land consolidation(LC) stands as a globally recognized strategy for rural development. In China, it has evolved towards comprehensive land consolidation(CLC) to support the rural revitalization initiative. However, there are ongoing challenges in understanding CLC's specific pathway and mechanism, particularly its role in stimulating rural endogenous development. This study aims to investigate the localization process of international experiences, examine the pathway of CLC, and scrutinize its mechanism in rural development from a novel perspective of neo-endogenous development. Field research and semi-structured interviews were conducted in Nanzhanglou village, renowned for its early adoption of CLC practices inspired by German experiences since 1988. Overall, key findings underscore the advantages of CLC in spatial restructuring, industrial development, and human capital enhancement in rural areas. Additionally, international experiences emerge as crucial exogenous forces, primarily by knowledge embedding, which catalyzes rural neo-endogenous development via the “resource-engagement-identity-endogenous” mechanism. Collectively, by introducing a neo-endogenous theoretical framework, this study offers valuable insights into the CLC implementation in China and beyond, and emphasizes the positive impact of knowledge embedding as an exogenous force in promoting rural neo-endogenous development to address existing research gaps. Recommendations for sustainable rural development involve enhancing rural planning practicality, governance capacity, and local leadership, while prioritizing agricultural modernization and increasing investments in education and vocational training to ensure that villagers benefit from industrial development.
基金National Natural Science Foundation of China(71703001)Scientific Research Project of Shaanxi Provincial Department of Education(2018JK038)Scientific Research Project of Baoji University of Arts and Sciences(ZK15006).
文摘Family farm is a new type of agricultural operation,and the research on ecological compensation for its production behavior is conducive to consolidating the basic position of agriculture and protecting agricultural resources and environment.By summarizing and drawing lessons from the domestic research results in related fields,the family farm is selected as the object,and the opportunity cost method is used to analyze the setting of the ecological compensation standard of the family farm.The basic framework of ecological compensation mechanism of family farm is constructed from three aspects:ecological compensation responsibility determination mechanism;compensation object establishment mechanism;compensation standard determination and mode selection mechanism.The operation mechanism of ecological compensation of family farm is analyzed from three aspects:farmer;farm production;resources and environment.The results show that the family farms'pursuit of agricultural products and ecological services is the response mechanism of ecological compensation for their production behavior.On the basis of this,this paper puts forward some measures and suggestions to ensure the ecological compensation mechanism of family farms from three aspects:perfecting the land use system;widening the compensation channels;constructing the green GDP accounting.
基金the Indonesia Endowment Fund for Education (LPDP)
文摘Objective: Physical and psychological stress causes harm to the health status of the elderly with chronic diseases. This study aimed to understand coping mechanisms of the elderly with chronic conditions who live with their family. Methods: This study was conducted using a descriptive phenomenology method from the experience of 13 older adults with chronic disease. The study processes were interviewed, tape recorded, transcribed, and explored from the transcripts using Colaizzi’s descriptive phenomenological method. The steps of the descriptive phenomenology process are bracketing, intuiting, analyzing, and describing. Results: The coping mechanisms used by the elderly with chronic diseases are (1) the behavioral focus coping ways by doing sports, and physical activities;(2) Focus on spirituality has been implemented by fasting, chanting, dhikr, and prayer;(3) The cognitive focus by working on hobbies or habitual activities and helping each other;(4) The social interaction focus was by interacting with friends, family, and neighbors. Conclusions: This shows that elderly adults with disease conditions try to adapt various forms of coping mechanisms, which positively affects their psychological state. Families which have elderly with chronic diseases are expected to provide nurturing and psychological support to them so that the elderly can consistently apply coping mechanisms to overcome and tackle chronic diseases. Understanding the coping mechanism implementation of the elderly who have chronic diseases by their family can guide health specialists in designing psychological and spiritual approach interventions.
基金Supported by Project of Business Management Cultivation Discipline in Department of Business and Trade,Rongchang Campus,Southwest University(RCQG207001)
文摘In the development of family enterprises of feed and veterinary drugs in China,there are many problems,such as lack of organic integration of human capital and social human capital.This paper introduced development thread of family enterprises of feed and veterinary drugs in China,analyzed theories and practical development requirement for improving professional manager mechanism,and came up with recommendations including establishing proper employing system,incentive and restraint mechanism,corporate culture,and professional manager market.
文摘Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The compressive strength and hardness values of the composites were also determined. The results show that the composites have higher compressive yield strength and hardness values than hot-rolled pure titanium. Twins in the microstructure of TMCs show that titanium particles undergo plastic deformation during consolidation process. The fine grains with size less than 1 μm often locate in the boundaries among the titanium particles. TiC particles seem to keep unchanged during the consolidation. These bring about the increase in strength and hardness for the composites. The detonation speed of 3 200 m/s is proper parameter for compacting powder in the present work.
基金supported by the National Natural Science Foundation of China(Grant No.41790444)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB40000000)。
文摘Gully erosion is serious in the tableland area of the Loess Plateau due to high-intensity human activities and extreme rainfall, which cause serious soil loss and an increasing tableland shrinkage rate. Severe gully erosion has exerted a notable negative impact on local agriculture, human life and socioeconomic development. In recent decades, progress has been made in soil and water conservation with the goal of reducing soil erosion and protecting loess tableland, but basic research on gully consolidation and tableland protection(GCTP) is lacking, especially regarding the mechanisms of gully erosion and expansion in loess tableland under the interactive impacts of hydrodynamics and human activities. In addition, there is a lack of a deep understanding of the underlying mechanisms of soil-water disasters and controlling factors of unreasonable GCTP projects.Currently, the problems of headcut erosion and tableland fragmentation remain serious. Based on this situation, the Dongzhi tableland, the largest tableland on the Loess Plateau, was adopted as an example, and we studied gully erosion and expansion mechanisms in the loess tableland and the scientific basis of GCTP projects. We obtained a series of novel findings, including the following:(1) vertical joints are widely developed in loess and impose a controlling effect on tableland edge erosion;(2) rapid urbanization and road network expansion intensify headcut erosion and are the main reasons for severe erosion and tableland shrinkage in the Dongzhi tableland;and(3) unreasonable drainage of surface runoff and a rise in the groundwater level are the key factors affecting GCTP project stability. Moreover, the mechanisms and modes of erosion disasters in the project driven by these two factors were explained. The systematic remediation idea of retention, storage, drainage and consolidation for the GCTP project was introduced, and the core is water control, which emphasizes the combination of soil and water conservation and geohazard prevention measures. As a systematic remediation project, GCTP in loess tableland requires multidisciplinary and multimethod approaches and multiple measures involving ecology, soil and water conservation, geology and engineering to ensure project feasibility and sustainability.
基金Supported by the National Science Foundation for Young Scientists of China(No.41206054)the Joint Fund of the National Natural Science Foundation of China and Shandong Province(No.U1606401)the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes(No.2015G08)
文摘One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.