To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ...Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.展开更多
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ...Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b...A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.展开更多
The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi...The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.展开更多
Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly m...Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases...Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.展开更多
It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo...It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.展开更多
Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge f...Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge for builders. This study aims to take stock of the use of sand in construction in Togo. One hundred and eighteen (118) sand quarries in operation, including thirty-eight (38) silty sand quarries and eighty (80) river sand quarries, were identified following surveys carried out among stakeholders involved in the chain of construction on 40% of the national territory. It appears from these surveys that river sands (59.43% to 84.68%) are prioritized over silty sands (15.32% to 40.57%). Three (3) main reasons are behind the choice of sand type;namely, proximity (28%), cleanliness (25%), good appearance (25%). These three (03) reasons partly explain the strong dependence of users on the sands located in their vicinity as well as the related expenses. Thus, making data available on the characteristics of sand, the materials most used in construction in Togo, would contribute to improving the housing conditions of the Togolese population. .展开更多
The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability...The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability problems. This may be dependent on hydrosedimentological characteristics of the Kasai River. This abundance of sand thus conditions the morphology of the middle course of the Kasai River in the section under our study. It therefore constitutes sedimentary navigation obstacles. The objective of this study is the granulometric and mineralogical characterization of the bar sands of the Kasai River in this study section. Particle size analyzes reveal these are moderately well classified to well classified unimodal sands (Classification coefficient between 1.29 to 1.742) largely presenting grain size symmetry and rarely fine asymmetry (Asymmetry coefficient—Skewness between −0.197 to 0.069) with mesorkurtic and rarely leptokurtic and platykurtic acuity (Angulosity coefficient—Kurtosis between 0.814 to 1.323). All these parameters evolve in sawtooth patterns from upstream to downstream. And then, an automated mineralogical analysis of the sands of the Kasaï River using a Qemscan FEG Quanta 650 made it possible to determine a very varied mineralogical procession with a sawtooth evolution. It is largely dominated by quartz (between 93.73% and 99.07%), followed by calcite (0.01% - 2.66%), iron oxides (0.01% - 1.88%), orthoclase (0.04% - 0.99%), plagioclase (0.01% - 0.75%) and Kaolinite (0.18% - 0.71%). Finally, this mineralogical procession is characterized by a group of minerals which do not reach the threshold of 0.55% such as: illite, apatite, ilmenite, muscovite, chlorite, biotite, montmorillonite, rutile, pyrophyllite, siderite, zircon and dolomite. The evolution of the mineralogical procession of the sands of the bars is not as clear as in the case of particle size parameters.展开更多
The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture ...The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.展开更多
The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by s...The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).展开更多
In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels...In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels in rocks on fluids is significant for gas flow in rock strata.In this regard,graded incremental cyclic loading and unloading experiments were conducted on sandstones with different initial stress levels.Then,the three-dimensional models for fracture channels in sandstones were established.Finally,the fracture channel percentages were used to reflect the flow conductivity of fracture channels.The study revealed how the particle size distribution of fractured sandstone affects the formation and expansion of fracture channels.It was found that a smaller proportion of large blocks and a higher proportion of small blocks after sandstone fails contribute more to the formation of fracture channels.The proportion of fracture channels in fractured rock can indicate the flow conductivity of those channels.When the proportion of fracture channels varies gently,fluids flow evenly through those channels.However,if the proportion of fracture channels varies significantly,it can greatly affect the flow rate of fluids.The research results contribute to revealing the morphological evolution and flow conductivity of fracture channels in sandstone and then provide a theoretical basis for clarifying the gas flow pattern in the rock strata of coal mines.展开更多
The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was develope...The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.展开更多
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
文摘Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China (IRT_15R29)the Basic Research Innovation Group Project of Gansu Province, China (21JR7RA347)the Natural Science Foundation of Gansu Province, China (20JR10RA231)。
文摘Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
基金financially supported by JSPS KAKENHI Grant Number JP19K15083.
文摘A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.
基金sponsored by Major Science and Technology Special Project of CNPC(Grant No.2023ZZ07)。
文摘The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.
基金supported by the Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)supported by the National Natural Science Foundations of China(No.52171282)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
文摘Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.
基金The research described in this paper was financially supported by Youth Science Foundation Project’Research on Failure Mechanism and Evaluation Method of Sand Control Measures for Railway Machinery in Sandy Area’(12302511)Ningxia Transportation Department Science and Technology Project(20200173)Central guide local science and technology development funds(22ZY1QA005)。
文摘It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway.
文摘Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge for builders. This study aims to take stock of the use of sand in construction in Togo. One hundred and eighteen (118) sand quarries in operation, including thirty-eight (38) silty sand quarries and eighty (80) river sand quarries, were identified following surveys carried out among stakeholders involved in the chain of construction on 40% of the national territory. It appears from these surveys that river sands (59.43% to 84.68%) are prioritized over silty sands (15.32% to 40.57%). Three (3) main reasons are behind the choice of sand type;namely, proximity (28%), cleanliness (25%), good appearance (25%). These three (03) reasons partly explain the strong dependence of users on the sands located in their vicinity as well as the related expenses. Thus, making data available on the characteristics of sand, the materials most used in construction in Togo, would contribute to improving the housing conditions of the Togolese population. .
文摘The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability problems. This may be dependent on hydrosedimentological characteristics of the Kasai River. This abundance of sand thus conditions the morphology of the middle course of the Kasai River in the section under our study. It therefore constitutes sedimentary navigation obstacles. The objective of this study is the granulometric and mineralogical characterization of the bar sands of the Kasai River in this study section. Particle size analyzes reveal these are moderately well classified to well classified unimodal sands (Classification coefficient between 1.29 to 1.742) largely presenting grain size symmetry and rarely fine asymmetry (Asymmetry coefficient—Skewness between −0.197 to 0.069) with mesorkurtic and rarely leptokurtic and platykurtic acuity (Angulosity coefficient—Kurtosis between 0.814 to 1.323). All these parameters evolve in sawtooth patterns from upstream to downstream. And then, an automated mineralogical analysis of the sands of the Kasaï River using a Qemscan FEG Quanta 650 made it possible to determine a very varied mineralogical procession with a sawtooth evolution. It is largely dominated by quartz (between 93.73% and 99.07%), followed by calcite (0.01% - 2.66%), iron oxides (0.01% - 1.88%), orthoclase (0.04% - 0.99%), plagioclase (0.01% - 0.75%) and Kaolinite (0.18% - 0.71%). Finally, this mineralogical procession is characterized by a group of minerals which do not reach the threshold of 0.55% such as: illite, apatite, ilmenite, muscovite, chlorite, biotite, montmorillonite, rutile, pyrophyllite, siderite, zircon and dolomite. The evolution of the mineralogical procession of the sands of the bars is not as clear as in the case of particle size parameters.
文摘The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.
文摘The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).
基金This work was financially supported by the National Natural Science Foundation of China(No.52074041)the Chongqing Talent Program(No.cstc2022ycjh-bgzxm0077)the Postgraduate Research and Innovation Foundation of Chongqing,China(No.CYS23060).
文摘In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels in rocks on fluids is significant for gas flow in rock strata.In this regard,graded incremental cyclic loading and unloading experiments were conducted on sandstones with different initial stress levels.Then,the three-dimensional models for fracture channels in sandstones were established.Finally,the fracture channel percentages were used to reflect the flow conductivity of fracture channels.The study revealed how the particle size distribution of fractured sandstone affects the formation and expansion of fracture channels.It was found that a smaller proportion of large blocks and a higher proportion of small blocks after sandstone fails contribute more to the formation of fracture channels.The proportion of fracture channels in fractured rock can indicate the flow conductivity of those channels.When the proportion of fracture channels varies gently,fluids flow evenly through those channels.However,if the proportion of fracture channels varies significantly,it can greatly affect the flow rate of fluids.The research results contribute to revealing the morphological evolution and flow conductivity of fracture channels in sandstone and then provide a theoretical basis for clarifying the gas flow pattern in the rock strata of coal mines.
基金This work was financially supported by the State Key Laboratory of New Textile Materials and Advanced Processing Technologies(No.FZ2021014)the Wuhan Science and Technology Bureau Application Foundation Frontier Project(2022023988065216)+2 种基金the National Natural Science Foundation of China(J2124010,51405348,51575405)the Educational Commission of Hubei Province of China(D20171604)the Hubei Provincial Natural Science Foundation of China(2018CFB673).
文摘The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.