New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recen...New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recent years,new R&D institutions have gradually become the driving force of innovation-driven development in China.Taking new R&D institutions in Zhejiang Province as the research object,this paper studies the internal talent training path and performance evaluation mechanism of new R&D institutions in Zhejiang Province by using the literature research method,comparison method,case verification method,and other methods.The investigation results show that there are problems such as lack of material and spiritual support and neglect of the absorption of local talents in the internal talent training,and there are problems such as unclear standards,insufficient data,and opaque processes in the performance evaluation mechanism,which greatly affect the establishment and improvement of the performance evaluation mechanism.Given the above problems,this paper puts forward a forward-looking,oriented,flexible,and compatible talent training path and performance evaluation mechanism,hoping to optimize the effective internal talent training path of new R&D institutions,improve the evaluation performance,and promote healthy development of new R&D institutions in Zhejiang Province.展开更多
Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent tas...Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.展开更多
Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementati...Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementation requires comprehensive improvements in the maturity of the supporting auxiliary service market. This study reviews the development status and evolution path of the European unified power market and the US regional power market, provides experience for the development of China’s regional power market, then identifies the key influencing factors of auxiliary service trading mechanism design in regional power markets. To analyze the rationality of the auxiliary service trading evaluation index, this paper established an evaluation model for assessing regional power markets. Using combined weight optimization, the gray correlation TOPSIS method was applied to comprehensively evaluate auxiliary service trading in the regional power market. Finally, the application of the proposed evaluation method was briefly analyzed to examine four regional power markets in China and evaluate the effectiveness of current market construction in different regions and provide suggestions for future market construction.展开更多
Ultraviolet(UV),ozone(O_(3)),and particulate matter(PM)in air pollutants in the external environment can induce skin aging through oxidative mechanisms such as free radicals,lipid peroxidation,and protein oxidation.An...Ultraviolet(UV),ozone(O_(3)),and particulate matter(PM)in air pollutants in the external environment can induce skin aging through oxidative mechanisms such as free radicals,lipid peroxidation,and protein oxidation.Antioxidant cosmetics can be used to defend against oxidative damage caused by the external environment to the skin.In China,the claimed cosmetics need to be managed according to new efficacy cosmetics,but there are currently few reports on the evaluation methods for such new efficacy cosmetics.The efficacy evaluation methods of cosmetics with antioxidant mechanisms under UV,O_(3),and PM models were reviewed,and the skin damage caused by UV,O_(3),and PM were introduced.Suggestions for the application of each model in the efficacy evaluation of antioxidant cosmetics and raw materials were given to provide ideas for new efficacy claims and technical references for establishing a new efficacy evaluation system.展开更多
In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of e...In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.展开更多
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti...The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.展开更多
Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application ...Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.展开更多
The study focuses on assessing the financial management practices and accounting mechanisms in agricultural cooperatives in Tulsipur Sub-Metropolitan,Dang District,Nepal with a focus on understanding their implication...The study focuses on assessing the financial management practices and accounting mechanisms in agricultural cooperatives in Tulsipur Sub-Metropolitan,Dang District,Nepal with a focus on understanding their implications for financial performance and organizational effectiveness.The sample size of total cooperatives(n=46)was divided into Savings and Credit Cooperatives(n=18)and Multipurpose Cooperatives(n=28),respectively,with a total number of respondents(n=138)categorized into managing directors,employees,and general members.Using a mixed-methods approach that combines quantitative analysis of financial data with qualitative insights gathered through interviews and surveys,the study emphasizes the importance of modern financial practices,improved reporting mechanisms,and relevant staff training for long-term sustainability.Recommendations include the integration of criteria and evaluation tools to assess cooperative performance,with Hamro Pahunch Multipurpose Cooperative identified as a high performer.Emphasizing the need for robust financial management strategies to navigate the complexity of the agricultural sector,manage risks,and achieve sustainable development,the study notes frequent preparation of financial management reports on a monthly and annual basis,and predominantly annual accounting management.Most cooperatives are using computerized models to present financial positions,but face challenges such as lack of marketing infrastructure,cooperative skills,and technical support.Ultimately,the study advocates for educating policy makers,cooperative leaders,practitioners and stakeholders on the role of effective financial management and accounting in enhancing the resilience,expansion and socio-economic impact of agricultural cooperatives,thereby fostering their long-term prosperity and viability as drivers of rural development and empowerment.展开更多
One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions w...One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions with different levels of resistance to SBPH were detected, accounting for 18.1% of the total accessions, which included 2 highly resistant, 9 resistant and 14 moderately resistant varieties. Compared with indica rice, japonica rice was more susceptible to SBPH. Antixenosis test, antibiosis test and correlation analysis were performed to elucidate the resistance mechanism. The resistant check Rathu Heenati (RHT), highly resistant varieties Mudgo and Kasalath, and resistant variety IR36 expressed strong antixenosis and antibiosis against SBPH, indicating the close relationship between resistance level and these two resistance mechanisms in the four rice varieties. Antibiosis was the dominant resistance pattern in the resistant varieties Daorenqiao and Yangmaogu due to their high antibiosis but low antixenosis. Dular, ASD7 and Milyang 23 had relatively strong antixenosis and antibiosis, indicating the two resistance mechanisms were significant in these three varieties. The resistant DV85 expressed relatively high level of antixenosis but low antibiosis, whereas Zhaiyeqing 8 and Guiyigu conferred only moderate antibiosis and antixenosis to SBPH, suggesting tolerance in these three varieties. Antibiosis and antixenosis governed the resistance to SBPH in the moderately resistant accession 9311. Antixenosis was the main resistance type in V20A. Tolerance was considered to be an important resistance mechanism in Minghui 63 and Yangjing 9538 due to their poor antibiosis and antixenosis resistance. The above accessions with strong antibiosis or antixenosis were the ideal materials for the resistance breeding.展开更多
According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in eva...According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in evaluating the value of the employees in an enterprise. Consequently, a lot of employees might be laid off. Hence, this paper puts forward a two-stage method for decision-making to carry out a selective plan of buyout, based on the fuzzy synthetic evaluation involing many factors impacting on human resource. Moreover, a positive analysis is also given.展开更多
The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,th...The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.展开更多
Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment...Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment in the South China Sea Islands,to achieve the sound development of island tourism in the South China Sea.Therefore,based on the study of the geographical environment and geographical background of the South China Sea Islands,the mechanism analysis method is used to form three interpretation systems.First,interpretation system of meridional causality mechanism.4 evaluation levels and 52 indicators are screened out,and the mathematical and physical criteria for each indicator is established.Second,interpretation system of latitudinal factor relationship mechanism.The AHP is used to obtain the weights of each index,and the contribution rate of factor at each level to the vulnerability is determined.Third,sharing platform of connecting meridional and latitudinal interpretation system.Likert 5-level scale is used to make the factors belong to different orders of magnitude,and factors from different systems could be comparable.Finally,through the formulation of mathematical and chemical standards of indexes and weights of evaluation indexes,a comprehensive evaluation model for vulnerability of tourism environment in the South China Sea Islands is established.展开更多
Crowdsourcing has been used recently as an alternative to traditional costly annotation by many natural language processing groups. In this paper, we explore the use of Wechat Official Account Platform (WOAP) in order...Crowdsourcing has been used recently as an alternative to traditional costly annotation by many natural language processing groups. In this paper, we explore the use of Wechat Official Account Platform (WOAP) in order to build a speech corpus and to assess the feasibility of using WOAP followers (also known as contributors) to assemble speech corpus of Mongolian. A Mongolian language qualification test was used to filter out potential non-qualified participants. We gathered natural speech recordings in our daily life, and constructed a Chinese-Mongolian Speech Corpus (CMSC) of 31472 utterances from 296 native speakers who are fluent in Mongolian, totalling 30.8 h of speech. Then,an evaluation experiment was performed, in where the contributors were asked to choose a correct sentence from a multiple choice list to ensure the high-quality of corpus. The results obtained so far showed that crowdsourcing for constructing CMSC with an evaluation mechanism could be more effective than traditional experiments requiring expertise.展开更多
The construction of curriculum ideological and political education mechanism in colleges and universities in China has begun to take effect.In view of the differences in the key points of different colleges and univer...The construction of curriculum ideological and political education mechanism in colleges and universities in China has begun to take effect.In view of the differences in the key points of different colleges and universities in the construction of curriculum ideological and political education mechanism,the quality evaluation of curriculum ideological and political education mechanism is particularly important.However,the quality evaluation mechanism is related to ability,fairness,and potential.It is essential to assume the effectiveness of moral education in college curriculum ideological and political education as the benchmark,adhere to positioning experts,teachers,and students as the key elements of the main body of the evaluation mechanism,as well as establish a diversified quality evaluation standard system based on the teaching management,infrastructure,and moral education effectiveness.Building a scientific and multi-dimensional quality evaluation mechanism for ideological and political education in colleges and universities would promote the connotative development of ideological and political education in courses.展开更多
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex...In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth.展开更多
A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including ...A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including deforming,fracturing,forming a local high-temperature region and igniting,were simulated using a coupled mechanical-thermo-chemical model integrating micro-defects evolution.A novel evaluation method for impact sensitivity is established using the relation between the input kinetic energy and the output energy due to deformation,crushing energy,local hot spot energy and ignition.The effects of impact velocity on sensitivity were analyzed and the critical local ignition impact velocity is determined as 4.0-4.5 m/s.The simulated results show that shear-crack friction heating is the dominant ignition mechanism.The region along the boundary of PBXs sample is the most hazardous regions where ignition first occur.The propagation of stress wave in PBXs causes shear-crack hotspot and bulk temperature exhibiting an approximate 45°direction evolution path,which is the main reason that dominated damage-ignition region transits from the boundary to the central of sample.展开更多
Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evoluti...Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.展开更多
In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to ...In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to perform electrified accelerated corrosion experiments.The relative dynamic elastic modulus and relative corrosion current density were considered to describe the deterioration law of the RRC in saline soil.The results indicated that as the energization time increased,the corrosion current density,corrosion potential,and polarization resistance of the steel bar decreased gradually.Compared with ordinary reinforced concrete,when the RCA content was 30%,the ability of the RRC to resist corrosion was improved slightly;however,when the RCA content exceeded 30%,the corrosion resistance of the RRC deteriorated rapidly.Scanning electron microscopy revealed that for a dense RRC,less corrosion products were generated in the pores inside the concrete and on the surface of the steel bar.X-ray diffraction results indicated that SO_(4)^(2-) can generate ettringite and other corrosion products,along with volume expansion.The main corrosion products generated on the surface of the steel bars included Fe_(2)O_(3),Fe_(3)O_(4) and FeO(OH),which were the corrosion products generated by steel bars under natural environments.Therefore,using saline soil as an electrolyte is more consistent with the actual service environments of RRC.Both the relative dynamic mode and relative corrosion current density of the degradation parameters conform to the Weibull distribution;furthermore,the relative dynamic mode is more sensitive and the corresponding reliability curve can better describe the degradation law of RRC under saline soil environments.展开更多
IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the ne...IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.展开更多
A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground o...A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground on the uncertainty measure theory. Then the single-index measure function of sixteen influential factors and the calculation method of computing the index weight ground on entropy theory were respectively established. The value assignment of sixteen influential factors was carried out by the qualitative analysis and observational data, respectively, in succession. The sequence of fire danger class of four experimental coalfaces could be obtained by the computational aids of Matlab according to the confidence level criterion. Some conclusions that the fire danger class of the No.l, No.2 and No.3 coalface belongs to high criticality can be obtained. But the fire danger class of the No.4 coalface belongs to higher criticality. The fire danger class of the No.4 coalface is more than that of the No.2 coalface. The fire danger class of the No.2 coalface is more than that of the No.1 coalface. Finally, the fire danger class of the No.1 coalface is more than that of the No.3 coalface.展开更多
文摘New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recent years,new R&D institutions have gradually become the driving force of innovation-driven development in China.Taking new R&D institutions in Zhejiang Province as the research object,this paper studies the internal talent training path and performance evaluation mechanism of new R&D institutions in Zhejiang Province by using the literature research method,comparison method,case verification method,and other methods.The investigation results show that there are problems such as lack of material and spiritual support and neglect of the absorption of local talents in the internal talent training,and there are problems such as unclear standards,insufficient data,and opaque processes in the performance evaluation mechanism,which greatly affect the establishment and improvement of the performance evaluation mechanism.Given the above problems,this paper puts forward a forward-looking,oriented,flexible,and compatible talent training path and performance evaluation mechanism,hoping to optimize the effective internal talent training path of new R&D institutions,improve the evaluation performance,and promote healthy development of new R&D institutions in Zhejiang Province.
基金supported financially by the National Key Research and Development Program of China (Grants No. 2017YFA0206301)the National Natural Science Foundation of China (Grants No. 51631001 and 51631001)the China-Germany Collaboration Project (Grants No. M-0199)
文摘Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.
基金supported by the Beijing Power Exchange Center (Study on the Medium and Long Term Time Division Transaction Mode and Balance Mechanism of Electric Power)supported by the National Natural Science Foundation of China(No. 72171082)。
文摘Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementation requires comprehensive improvements in the maturity of the supporting auxiliary service market. This study reviews the development status and evolution path of the European unified power market and the US regional power market, provides experience for the development of China’s regional power market, then identifies the key influencing factors of auxiliary service trading mechanism design in regional power markets. To analyze the rationality of the auxiliary service trading evaluation index, this paper established an evaluation model for assessing regional power markets. Using combined weight optimization, the gray correlation TOPSIS method was applied to comprehensively evaluate auxiliary service trading in the regional power market. Finally, the application of the proposed evaluation method was briefly analyzed to examine four regional power markets in China and evaluate the effectiveness of current market construction in different regions and provide suggestions for future market construction.
文摘Ultraviolet(UV),ozone(O_(3)),and particulate matter(PM)in air pollutants in the external environment can induce skin aging through oxidative mechanisms such as free radicals,lipid peroxidation,and protein oxidation.Antioxidant cosmetics can be used to defend against oxidative damage caused by the external environment to the skin.In China,the claimed cosmetics need to be managed according to new efficacy cosmetics,but there are currently few reports on the evaluation methods for such new efficacy cosmetics.The efficacy evaluation methods of cosmetics with antioxidant mechanisms under UV,O_(3),and PM models were reviewed,and the skin damage caused by UV,O_(3),and PM were introduced.Suggestions for the application of each model in the efficacy evaluation of antioxidant cosmetics and raw materials were given to provide ideas for new efficacy claims and technical references for establishing a new efficacy evaluation system.
基金the National Key Research and Development Program of China,Grant/Award Number:2021YFD1600100 and 2022YFD1600303。
文摘In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.
基金supported by the Key Scientific and Technological Research Projects of Xinjiang Production and Construction Corps (2022AB001)the Henan Key Laboratory of Cold Chain Food Quality and Safety Control (CCFQ2022)+2 种基金the National Key R&D Program of China (2019YFC1606200),funded by Ministry of Science and Technology of the People’s Republic of Chinathe China Agriculture Research System (CARS-41), which was funded by the Chinese Ministry of Agriculturethe Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)
文摘The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.
基金supported by National Natural Science Foundation of China(51974166).
文摘Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.
文摘The study focuses on assessing the financial management practices and accounting mechanisms in agricultural cooperatives in Tulsipur Sub-Metropolitan,Dang District,Nepal with a focus on understanding their implications for financial performance and organizational effectiveness.The sample size of total cooperatives(n=46)was divided into Savings and Credit Cooperatives(n=18)and Multipurpose Cooperatives(n=28),respectively,with a total number of respondents(n=138)categorized into managing directors,employees,and general members.Using a mixed-methods approach that combines quantitative analysis of financial data with qualitative insights gathered through interviews and surveys,the study emphasizes the importance of modern financial practices,improved reporting mechanisms,and relevant staff training for long-term sustainability.Recommendations include the integration of criteria and evaluation tools to assess cooperative performance,with Hamro Pahunch Multipurpose Cooperative identified as a high performer.Emphasizing the need for robust financial management strategies to navigate the complexity of the agricultural sector,manage risks,and achieve sustainable development,the study notes frequent preparation of financial management reports on a monthly and annual basis,and predominantly annual accounting management.Most cooperatives are using computerized models to present financial positions,but face challenges such as lack of marketing infrastructure,cooperative skills,and technical support.Ultimately,the study advocates for educating policy makers,cooperative leaders,practitioners and stakeholders on the role of effective financial management and accounting in enhancing the resilience,expansion and socio-economic impact of agricultural cooperatives,thereby fostering their long-term prosperity and viability as drivers of rural development and empowerment.
文摘One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions with different levels of resistance to SBPH were detected, accounting for 18.1% of the total accessions, which included 2 highly resistant, 9 resistant and 14 moderately resistant varieties. Compared with indica rice, japonica rice was more susceptible to SBPH. Antixenosis test, antibiosis test and correlation analysis were performed to elucidate the resistance mechanism. The resistant check Rathu Heenati (RHT), highly resistant varieties Mudgo and Kasalath, and resistant variety IR36 expressed strong antixenosis and antibiosis against SBPH, indicating the close relationship between resistance level and these two resistance mechanisms in the four rice varieties. Antibiosis was the dominant resistance pattern in the resistant varieties Daorenqiao and Yangmaogu due to their high antibiosis but low antixenosis. Dular, ASD7 and Milyang 23 had relatively strong antixenosis and antibiosis, indicating the two resistance mechanisms were significant in these three varieties. The resistant DV85 expressed relatively high level of antixenosis but low antibiosis, whereas Zhaiyeqing 8 and Guiyigu conferred only moderate antibiosis and antixenosis to SBPH, suggesting tolerance in these three varieties. Antibiosis and antixenosis governed the resistance to SBPH in the moderately resistant accession 9311. Antixenosis was the main resistance type in V20A. Tolerance was considered to be an important resistance mechanism in Minghui 63 and Yangjing 9538 due to their poor antibiosis and antixenosis resistance. The above accessions with strong antibiosis or antixenosis were the ideal materials for the resistance breeding.
文摘According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in evaluating the value of the employees in an enterprise. Consequently, a lot of employees might be laid off. Hence, this paper puts forward a two-stage method for decision-making to carry out a selective plan of buyout, based on the fuzzy synthetic evaluation involing many factors impacting on human resource. Moreover, a positive analysis is also given.
文摘The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.
基金Supported by National Natural Science Foundation of China(41561111,41661111,41906176)Hainan Graduate Innovative Scientific Research Project(Hys2018-154).
文摘Tourism vulnerability research is an important theoretical basis for sustainable research of tourism.In this study,it hopes to establish a comprehensive evaluation index system for vulnerability of tourism environment in the South China Sea Islands,to achieve the sound development of island tourism in the South China Sea.Therefore,based on the study of the geographical environment and geographical background of the South China Sea Islands,the mechanism analysis method is used to form three interpretation systems.First,interpretation system of meridional causality mechanism.4 evaluation levels and 52 indicators are screened out,and the mathematical and physical criteria for each indicator is established.Second,interpretation system of latitudinal factor relationship mechanism.The AHP is used to obtain the weights of each index,and the contribution rate of factor at each level to the vulnerability is determined.Third,sharing platform of connecting meridional and latitudinal interpretation system.Likert 5-level scale is used to make the factors belong to different orders of magnitude,and factors from different systems could be comparable.Finally,through the formulation of mathematical and chemical standards of indexes and weights of evaluation indexes,a comprehensive evaluation model for vulnerability of tourism environment in the South China Sea Islands is established.
文摘Crowdsourcing has been used recently as an alternative to traditional costly annotation by many natural language processing groups. In this paper, we explore the use of Wechat Official Account Platform (WOAP) in order to build a speech corpus and to assess the feasibility of using WOAP followers (also known as contributors) to assemble speech corpus of Mongolian. A Mongolian language qualification test was used to filter out potential non-qualified participants. We gathered natural speech recordings in our daily life, and constructed a Chinese-Mongolian Speech Corpus (CMSC) of 31472 utterances from 296 native speakers who are fluent in Mongolian, totalling 30.8 h of speech. Then,an evaluation experiment was performed, in where the contributors were asked to choose a correct sentence from a multiple choice list to ensure the high-quality of corpus. The results obtained so far showed that crowdsourcing for constructing CMSC with an evaluation mechanism could be more effective than traditional experiments requiring expertise.
文摘The construction of curriculum ideological and political education mechanism in colleges and universities in China has begun to take effect.In view of the differences in the key points of different colleges and universities in the construction of curriculum ideological and political education mechanism,the quality evaluation of curriculum ideological and political education mechanism is particularly important.However,the quality evaluation mechanism is related to ability,fairness,and potential.It is essential to assume the effectiveness of moral education in college curriculum ideological and political education as the benchmark,adhere to positioning experts,teachers,and students as the key elements of the main body of the evaluation mechanism,as well as establish a diversified quality evaluation standard system based on the teaching management,infrastructure,and moral education effectiveness.Building a scientific and multi-dimensional quality evaluation mechanism for ideological and political education in colleges and universities would promote the connotative development of ideological and political education in courses.
基金supported by the National Natural Science Foundation of China(U19B6003-03-01)the Science and Technology Department of Shanxi Province,China(20201101003)the National Natural Science Foundation of China(42030804).
文摘In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth.
基金China National Nature Science Foundation(Grant No.11872119)Foundation Strengthening Project(Grant No.2020-JCJQ-GFJQ2126-007)+1 种基金Pre-research Program of Armament(Grant No.6142A03202002)China Postdoctoral Science Foundation(Grant No.BX20200046)for supporting this project。
文摘A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including deforming,fracturing,forming a local high-temperature region and igniting,were simulated using a coupled mechanical-thermo-chemical model integrating micro-defects evolution.A novel evaluation method for impact sensitivity is established using the relation between the input kinetic energy and the output energy due to deformation,crushing energy,local hot spot energy and ignition.The effects of impact velocity on sensitivity were analyzed and the critical local ignition impact velocity is determined as 4.0-4.5 m/s.The simulated results show that shear-crack friction heating is the dominant ignition mechanism.The region along the boundary of PBXs sample is the most hazardous regions where ignition first occur.The propagation of stress wave in PBXs causes shear-crack hotspot and bulk temperature exhibiting an approximate 45°direction evolution path,which is the main reason that dominated damage-ignition region transits from the boundary to the central of sample.
基金Supported by the National Natural Science Foundation Project(42090020,42090025)Strategic Research of Oil and Gas Development Major Project of Ministry of Science and TechnologyPetroChina Scientific Research and Technological Development Project(2019E2601).
文摘Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.
基金Funded by National Natural Science Foundation of China (Nos. 51468039, 51868044)。
文摘In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to perform electrified accelerated corrosion experiments.The relative dynamic elastic modulus and relative corrosion current density were considered to describe the deterioration law of the RRC in saline soil.The results indicated that as the energization time increased,the corrosion current density,corrosion potential,and polarization resistance of the steel bar decreased gradually.Compared with ordinary reinforced concrete,when the RCA content was 30%,the ability of the RRC to resist corrosion was improved slightly;however,when the RCA content exceeded 30%,the corrosion resistance of the RRC deteriorated rapidly.Scanning electron microscopy revealed that for a dense RRC,less corrosion products were generated in the pores inside the concrete and on the surface of the steel bar.X-ray diffraction results indicated that SO_(4)^(2-) can generate ettringite and other corrosion products,along with volume expansion.The main corrosion products generated on the surface of the steel bars included Fe_(2)O_(3),Fe_(3)O_(4) and FeO(OH),which were the corrosion products generated by steel bars under natural environments.Therefore,using saline soil as an electrolyte is more consistent with the actual service environments of RRC.Both the relative dynamic mode and relative corrosion current density of the degradation parameters conform to the Weibull distribution;furthermore,the relative dynamic mode is more sensitive and the corresponding reliability curve can better describe the degradation law of RRC under saline soil environments.
基金supported by the Spanish Ministry of Science,Education and Universities,the European Regional Development Fund and the State Research Agency,Grant No.RTI2018-098156-B-C52.
文摘IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.
基金Supported by the National Foundation of China(50974055)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0618)Henan Province Basic and Leading-edge Technology Research Program(082300463205)
文摘A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground on the uncertainty measure theory. Then the single-index measure function of sixteen influential factors and the calculation method of computing the index weight ground on entropy theory were respectively established. The value assignment of sixteen influential factors was carried out by the qualitative analysis and observational data, respectively, in succession. The sequence of fire danger class of four experimental coalfaces could be obtained by the computational aids of Matlab according to the confidence level criterion. Some conclusions that the fire danger class of the No.l, No.2 and No.3 coalface belongs to high criticality can be obtained. But the fire danger class of the No.4 coalface belongs to higher criticality. The fire danger class of the No.4 coalface is more than that of the No.2 coalface. The fire danger class of the No.2 coalface is more than that of the No.1 coalface. Finally, the fire danger class of the No.1 coalface is more than that of the No.3 coalface.