The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati...A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.展开更多
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and...Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.展开更多
The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulati...The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to p...[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.展开更多
Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the b...Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions a...Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions and mechanism. The Well SKDI is the first exploration well drilled in the Paleogene of Jianghan Basin with continuous coring, which was implemented in the south-central Jiangling Basin in 2013. It is essential to study the Palaeocene-Eocene paleoclimate, to further constrain the extreme draught events and the potash forming conditions.展开更多
Hot dry rock(HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep reg...Hot dry rock(HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 m W/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.展开更多
The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that ...The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.展开更多
Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane ...Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.展开更多
The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements;it is in the eastern Alxa Block,adjacent to the North China Craton(NCC)and the North Qilian Orogenic Belt(NQOB).There are ...The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements;it is in the eastern Alxa Block,adjacent to the North China Craton(NCC)and the North Qilian Orogenic Belt(NQOB).There are well-developed Paleozoic-Cenozoic strata in this basin,and these provide a crucial window to a greater understanding of the amalgamation process and source-to-sink relationships between the Alxa Block and surrounding tectonic units.However,due to intensive post-depositional modification,and lack of subsurface data,several fundamental issues-including the distribution and evolution of the depositional systems,provenance supplies and source-to-sink relationships during the Carboniferous-Permian remain unclear and thus hinder hydrocarbon exploration and limit the geological understanding of this basin.Employing integrated outcrop surveys,new drilling data,and detrital zircon dating,this study examines the paleogeographic distribution and evolution,and provenance characteristics of the Carboniferous-Permian strata in the Bayanhot Basin.Our results show that the Bayanhot Basin experienced a long-term depositional evolution process from transgression to retrogression during the Carboniferous-late Permian.The transgression extent could reach the central basin in the early Carboniferous.The maximum regional transgression occurred in the early Permian and might connect the Qilian and North China seas with each other.Subsequently,a gradual regression followed until the end of the Permian.The northwestern NCC appeared as a paleo-uplift area and served as a sediments provenance area for the Alxa Block at that time.The NCC,Bayanwula Mountain,and NQOB jointly served as major provenances during the Carboniferous-Permian.There was no ocean separation,nor was there an orogenic belt between the Alxa Block and the NCC that provided sediments for both sides during the Carboniferous-Permian.The accretion of the Alxa and North China blocks should have been completed before the Carboniferous period.展开更多
Hot dry rock is becoming an important clean energy source. Enhanced geothermal systems(EGS) hold great promise for the potential to make a contribution to the energy inventory. However, one controversial issue associa...Hot dry rock is becoming an important clean energy source. Enhanced geothermal systems(EGS) hold great promise for the potential to make a contribution to the energy inventory. However, one controversial issue associated with EGS is the impact of induced seismicity. In August 2019, a hydraulic stimulation experiment took place at the hot dry rock site of the Gonghe Basin in Qinghai, China. Earthquakes of different magnitudes of 2 or less occurred during the hydraulic stimulation. Correlations between hydraulic stimulation and seismic risk are still under discussion. Here, we analyze the hydraulic stimulation test and microseismic activity. We quantify the evolution of several parameters to explore the correlations between hydraulic stimulation and induced seismicity, including hydraulic parameters, microseismic events, bvalue and statistical forecasting of event magnitudes. The results show that large-magnitude microseismic events have an upward trend with an increase of the total fluid volume. The variation of the b-value with time indicates that the stimulation experiment induces small amounts of seismicity. Forecasted magnitudes of events can guide operational decisions with respect to induced seismicity during hydraulic fracturing operations, thus providing the basis for risk assessment of hot dry rock exploitation.展开更多
As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the S...As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the South China Sea(SCS).Under the influence of complex geologic evolution,basin-range structures,fault systems and hot springs are well developed here.However,the characteristics of geological structures and the genetic mechanism of these geological phenomena are still unclear.Therefore,we performed ambient noise tomography to obtain 3-D upper crust(0-7.5 km)S-wave velocity structures of the GHMGBA by using 40-day continuous waveform data from 130 seismic stations in the GHMGBA.Our results show that sedimentary basins in the GHMGBA are mainly characterized by low-velocity anomalies.S-wave velocities of sediment formation in basins are about 2.8-3.1 km/s.Rapid changes in velocity appear at the edges of the basins,which correspond to the NE-,NEE-,and NW-trending faults,indicating prominent basin-controlling effects of the faults.The Sanshui Basin(SSB),the largest in the GHMGBA,has a developmental depth of about 4 km,and there is a significant difference in velocity gradient between the east and west sides of the basin,indicating that SSB has experienced east-west asymmetric expansion.Moreover,there are prominent low-velocity anomalies at a depth of about 4.5 km beneath the hot springs at the west of the Zhujiang(Pearl)River estuary(ZRE).We infer that the low-velocity anomalies are fluid reservoirs of the hot springs,which lead to the development of the hot springs on the surface.In addition,the distribution of main cities in the GHMGBA shows a spatial correlation with low-velocity areas at shallow depths(<3 km).The population development trend in the GHMGBA in the past 20 years is also mainly concentrated in the structural province of relatively low-velocity.In combination with the GHMGBA basin structures and drainage distribution characteristics,we suggest that the basic geological environment to some extent affects the habitability of the human settlement and thus determines the distribution and development trend of the main urban context.We believe that the 3-D S-wave velocity structure of the upper crust of the GHMGBA obtained in this study,as well as the deep structural characteristics of the basins and hot springs,will provide support to urban construction planning and geological hazards research of the GHMGBA.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to invest...Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to investigate groundwater bearing structures at the hot spring. Magnetic survey results showed that the spring occurs between two north dipping dykes. The two dykes could be faulted segments of a single dyke or sill. Magnetic susceptibility results highlighted the presence of metamorphic and volcanic rocks. Electromagnetic survey results showed that the hot spring was within a roughly east to west trending, zone with high electrical conductivity values. Based on the survey results, water is exploiting fractures in the dyke or sill.展开更多
The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 ...The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金supported by the National Natural Science Foundation of China(grant no.52192603,52275308).
文摘A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.
基金Supported by the National Natural Science Foundation of China(52192622,52304003).
文摘Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.
基金financial support from the National Natural Science Foundation of China(Nos.52233018 and 51831002)the China Baowu Low Carbon Metallurgy Innovation Foudation(No.BWLCF202213)。
文摘The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.
基金National Natural Science Foundation of China, No.40461002 The Key Project of the Ministry of Education, N0.205184
文摘Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金the National Science Foundation of China(Grants No.41502089,41302059 and 41202059)for their financial support
文摘Objective A total of 820 million tons of potash reserves are predicted to exist in the Palaeocene-Eocene of the Jianghan Basin. However, the basin history is still unclear concerning the potash enriching conditions and mechanism. The Well SKDI is the first exploration well drilled in the Paleogene of Jianghan Basin with continuous coring, which was implemented in the south-central Jiangling Basin in 2013. It is essential to study the Palaeocene-Eocene paleoclimate, to further constrain the extreme draught events and the potash forming conditions.
基金supported by National Key R&D Program of China(Grant No.2018YFB1501803)。
文摘Hot dry rock(HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 m W/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.
基金conducted in the frame of the grant of the Ministry of Science and High Education of the Russian Federation No.075-15-2019-1883。
文摘The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.
文摘Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.
基金supported by National Key R&D Program Project of China(Grant No.2017YFC0603106)the Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University,China(Grant No.201210140)。
文摘The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements;it is in the eastern Alxa Block,adjacent to the North China Craton(NCC)and the North Qilian Orogenic Belt(NQOB).There are well-developed Paleozoic-Cenozoic strata in this basin,and these provide a crucial window to a greater understanding of the amalgamation process and source-to-sink relationships between the Alxa Block and surrounding tectonic units.However,due to intensive post-depositional modification,and lack of subsurface data,several fundamental issues-including the distribution and evolution of the depositional systems,provenance supplies and source-to-sink relationships during the Carboniferous-Permian remain unclear and thus hinder hydrocarbon exploration and limit the geological understanding of this basin.Employing integrated outcrop surveys,new drilling data,and detrital zircon dating,this study examines the paleogeographic distribution and evolution,and provenance characteristics of the Carboniferous-Permian strata in the Bayanhot Basin.Our results show that the Bayanhot Basin experienced a long-term depositional evolution process from transgression to retrogression during the Carboniferous-late Permian.The transgression extent could reach the central basin in the early Carboniferous.The maximum regional transgression occurred in the early Permian and might connect the Qilian and North China seas with each other.Subsequently,a gradual regression followed until the end of the Permian.The northwestern NCC appeared as a paleo-uplift area and served as a sediments provenance area for the Alxa Block at that time.The NCC,Bayanwula Mountain,and NQOB jointly served as major provenances during the Carboniferous-Permian.There was no ocean separation,nor was there an orogenic belt between the Alxa Block and the NCC that provided sediments for both sides during the Carboniferous-Permian.The accretion of the Alxa and North China blocks should have been completed before the Carboniferous period.
基金funded by a grant from the National Key R&D Program of China(Grant nos.2018YFB1501803,2019YFC1804805-4)the National Natural Science Foundation of China(Grant No.42074178)+1 种基金Chinese Geological Survey projects(Grant No.DD2019135)the Education Department of Jilin Province,China(Grant No.JJKH20200945KJ)。
文摘Hot dry rock is becoming an important clean energy source. Enhanced geothermal systems(EGS) hold great promise for the potential to make a contribution to the energy inventory. However, one controversial issue associated with EGS is the impact of induced seismicity. In August 2019, a hydraulic stimulation experiment took place at the hot dry rock site of the Gonghe Basin in Qinghai, China. Earthquakes of different magnitudes of 2 or less occurred during the hydraulic stimulation. Correlations between hydraulic stimulation and seismic risk are still under discussion. Here, we analyze the hydraulic stimulation test and microseismic activity. We quantify the evolution of several parameters to explore the correlations between hydraulic stimulation and induced seismicity, including hydraulic parameters, microseismic events, bvalue and statistical forecasting of event magnitudes. The results show that large-magnitude microseismic events have an upward trend with an increase of the total fluid volume. The variation of the b-value with time indicates that the stimulation experiment induces small amounts of seismicity. Forecasted magnitudes of events can guide operational decisions with respect to induced seismicity during hydraulic fracturing operations, thus providing the basis for risk assessment of hot dry rock exploitation.
基金Supported by the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)+2 种基金the Guangdong Key Project(No.2019BT02H594)the Key Research and Development Plan of Hainan Province(No.ZDYF2020198)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2017DZ0101)。
文摘As one of the four largest bay areas with strong economic activities in the world,the Guangdong-Hong Kong-Macao Greater Bay Area(GHMGBA)is located in the zone of interaction between the South China Block(SCB)and the South China Sea(SCS).Under the influence of complex geologic evolution,basin-range structures,fault systems and hot springs are well developed here.However,the characteristics of geological structures and the genetic mechanism of these geological phenomena are still unclear.Therefore,we performed ambient noise tomography to obtain 3-D upper crust(0-7.5 km)S-wave velocity structures of the GHMGBA by using 40-day continuous waveform data from 130 seismic stations in the GHMGBA.Our results show that sedimentary basins in the GHMGBA are mainly characterized by low-velocity anomalies.S-wave velocities of sediment formation in basins are about 2.8-3.1 km/s.Rapid changes in velocity appear at the edges of the basins,which correspond to the NE-,NEE-,and NW-trending faults,indicating prominent basin-controlling effects of the faults.The Sanshui Basin(SSB),the largest in the GHMGBA,has a developmental depth of about 4 km,and there is a significant difference in velocity gradient between the east and west sides of the basin,indicating that SSB has experienced east-west asymmetric expansion.Moreover,there are prominent low-velocity anomalies at a depth of about 4.5 km beneath the hot springs at the west of the Zhujiang(Pearl)River estuary(ZRE).We infer that the low-velocity anomalies are fluid reservoirs of the hot springs,which lead to the development of the hot springs on the surface.In addition,the distribution of main cities in the GHMGBA shows a spatial correlation with low-velocity areas at shallow depths(<3 km).The population development trend in the GHMGBA in the past 20 years is also mainly concentrated in the structural province of relatively low-velocity.In combination with the GHMGBA basin structures and drainage distribution characteristics,we suggest that the basic geological environment to some extent affects the habitability of the human settlement and thus determines the distribution and development trend of the main urban context.We believe that the 3-D S-wave velocity structure of the upper crust of the GHMGBA obtained in this study,as well as the deep structural characteristics of the basins and hot springs,will provide support to urban construction planning and geological hazards research of the GHMGBA.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
文摘Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to investigate groundwater bearing structures at the hot spring. Magnetic survey results showed that the spring occurs between two north dipping dykes. The two dykes could be faulted segments of a single dyke or sill. Magnetic susceptibility results highlighted the presence of metamorphic and volcanic rocks. Electromagnetic survey results showed that the hot spring was within a roughly east to west trending, zone with high electrical conductivity values. Based on the survey results, water is exploiting fractures in the dyke or sill.
基金supported by National Key Research and Development Program of China(Grant No.2023YFF0804501)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2021069)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB31000000)the Second Comprehensive Scientific Expedition on the Tibetan Plateau(Grant No.2019QZKK0705)the All China Commission of Stratigraphy(Grant No.DD20221829).
文摘The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.