In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling...In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling, combining semantic web technologies, was proposed. A general configuration ontology was developed to provide a common concept structure for modeling configuration knowledge and rules of specific product domains. The OWL web ontology language and semantic web rule language (SWRL) were used to formally represent the configuration ontology, domain configuration knowledge and rules to enhance the consistency, maintainability and reusability of all the configuration knowledge. The configuration knowledge modeling of a customizable personal computer family shows that the approach can provide explicit, computerunderstandable knowledge semantics for specific product configuration domains and can efficiently support automatic configuration tasks of complex products.展开更多
Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurat...Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.展开更多
Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essenti...Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essential inherent reason which causes the models dynamic evolvement. In the traditional model evolvement process, the inheriting and reuse of configuration knowledge was always ignored. Aim at solving the above problem, the multistage rhombus evolution mode of configuration knowledge is discussed in this paper. The product model based on configuration knowledge is put forward in different levels to achieve the models dynamic evolvement and automatic upgrading. The evolving configuration knowledge drives the product model to evolve directly according to the rule of up-layer evolvement. Furthermore, a new configuration knowledge reuse and optimization technology is presented to inheriting and reuse the foregone configuration knowledge in the course of model evolvement. At last, the air separation equipment which is related with the project is taken as an example to illuminate that the presented model evolvement and configuration knowledge reuse technology are validity and practical.展开更多
Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submi...Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submitted to author co-citation analysis(ACA) following a longitudinal perspective as of the following time slices: 1986–1996, 1997–2006, and 2007–2015. The top 10% of most cited first authors by sub-periods were mapped in bibliometric networks in order to interpret the communities formed and their relationships.Findings: KM is a homogeneous field as indicated by networks results. Nine classical authors are identified since they are highly co-cited in each sub-period, highlighting Ikujiro Nonaka as the most influential authors in the field. The most significant communities in KM are devoted to strategic management, KM foundations, organisational learning and behaviour, and organisational theories. Major trends in the evolution of the intellectual structure of KM evidence a technological influence in 1986–1996, a strategic influence in 1997–2006, and finally a sociological influence in 2007–2015.Research limitations: Describing a field from a single database can offer biases in terms of output coverage. Likewise, the conference proceedings and books were not used and the analysis was only based on first authors. However, the results obtained can be very useful to understand the evolution of KM research.Practical implications: These results might be useful for managers and academicians to understand the evolution of KM field and to(re)define research activities and organisational projects.Originality/value: The novelty of this paper lies in considering ACA as a bibliometric technique to study KM research. In addition, our investigation has a wider time coverage than earlier articles.展开更多
In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manus...In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.展开更多
基金The National Natural Science Foundation of China(No.70471023).
文摘In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling, combining semantic web technologies, was proposed. A general configuration ontology was developed to provide a common concept structure for modeling configuration knowledge and rules of specific product domains. The OWL web ontology language and semantic web rule language (SWRL) were used to formally represent the configuration ontology, domain configuration knowledge and rules to enhance the consistency, maintainability and reusability of all the configuration knowledge. The configuration knowledge modeling of a customizable personal computer family shows that the approach can provide explicit, computerunderstandable knowledge semantics for specific product configuration domains and can efficiently support automatic configuration tasks of complex products.
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.
基金supported by National Natural Science Foundation of China (Grant No. 50835008, Grant No. 50875237, Grant No. 50705084)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z190, Grant No. 2008AA042301)
文摘Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essential inherent reason which causes the models dynamic evolvement. In the traditional model evolvement process, the inheriting and reuse of configuration knowledge was always ignored. Aim at solving the above problem, the multistage rhombus evolution mode of configuration knowledge is discussed in this paper. The product model based on configuration knowledge is put forward in different levels to achieve the models dynamic evolvement and automatic upgrading. The evolving configuration knowledge drives the product model to evolve directly according to the rule of up-layer evolvement. Furthermore, a new configuration knowledge reuse and optimization technology is presented to inheriting and reuse the foregone configuration knowledge in the course of model evolvement. At last, the air separation equipment which is related with the project is taken as an example to illuminate that the presented model evolvement and configuration knowledge reuse technology are validity and practical.
文摘Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submitted to author co-citation analysis(ACA) following a longitudinal perspective as of the following time slices: 1986–1996, 1997–2006, and 2007–2015. The top 10% of most cited first authors by sub-periods were mapped in bibliometric networks in order to interpret the communities formed and their relationships.Findings: KM is a homogeneous field as indicated by networks results. Nine classical authors are identified since they are highly co-cited in each sub-period, highlighting Ikujiro Nonaka as the most influential authors in the field. The most significant communities in KM are devoted to strategic management, KM foundations, organisational learning and behaviour, and organisational theories. Major trends in the evolution of the intellectual structure of KM evidence a technological influence in 1986–1996, a strategic influence in 1997–2006, and finally a sociological influence in 2007–2015.Research limitations: Describing a field from a single database can offer biases in terms of output coverage. Likewise, the conference proceedings and books were not used and the analysis was only based on first authors. However, the results obtained can be very useful to understand the evolution of KM research.Practical implications: These results might be useful for managers and academicians to understand the evolution of KM field and to(re)define research activities and organisational projects.Originality/value: The novelty of this paper lies in considering ACA as a bibliometric technique to study KM research. In addition, our investigation has a wider time coverage than earlier articles.
文摘In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.