The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zon...The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance, with the requirement of higher minimum energies, e.g., -1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.展开更多
基金The project supported by National Natural Science Foundation of China (Nos. 40336052, 40274050, and 40474064)Outstanding Youth Foundation of Education Bureau of Hunan Province (No. 04B003)
文摘The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance, with the requirement of higher minimum energies, e.g., -1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.