针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona...针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。展开更多
[目的/意义]本文提出基于长短时记忆(Long short-term memory,LSTM)神经网络和条件随机场(Conditional Random Field,CRF)的藏文分词模型。[方法/过程]引入注意力机制,获取更多特征信息,提升模型关注上下文信息与当前音节之间联系;提出...[目的/意义]本文提出基于长短时记忆(Long short-term memory,LSTM)神经网络和条件随机场(Conditional Random Field,CRF)的藏文分词模型。[方法/过程]引入注意力机制,获取更多特征信息,提升模型关注上下文信息与当前音节之间联系;提出一种音节扩展方法,获取更多的输入特征信息与语料信息,增强模型单音节特征信息以获取更多语义信息的能力。[局限]本文在西藏大学数据集12261条的基础上,扩充至74384条,形成Tibetan-News数据集。[结果/结论]实验结果表明,在模型中加入注意力机制并使用音节扩展方法后,模型在Tibetan-News数据集上的精确率、召回率和F1分别提升2.9%、3.5%和3.2%。基于本文模型的分词系统已在工程上应用推广。展开更多
文摘针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。
文摘[目的/意义]本文提出基于长短时记忆(Long short-term memory,LSTM)神经网络和条件随机场(Conditional Random Field,CRF)的藏文分词模型。[方法/过程]引入注意力机制,获取更多特征信息,提升模型关注上下文信息与当前音节之间联系;提出一种音节扩展方法,获取更多的输入特征信息与语料信息,增强模型单音节特征信息以获取更多语义信息的能力。[局限]本文在西藏大学数据集12261条的基础上,扩充至74384条,形成Tibetan-News数据集。[结果/结论]实验结果表明,在模型中加入注意力机制并使用音节扩展方法后,模型在Tibetan-News数据集上的精确率、召回率和F1分别提升2.9%、3.5%和3.2%。基于本文模型的分词系统已在工程上应用推广。